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Abstract

Here we show real-time multiple gas identification on a mobile platform through the
use of an array of nanomechanical membrane-type surface stress sensors (MSS).
Commercially available hardware is used to integrate the MSS array into a portable unit
with wireless capability. This unit transmits data to a consumer mobile tablet where
data is displayed and processed in real-time. To achieve real-time processing with the
limited computational power of commercial mobile hardware, a machine learning
algorithm known as Random Forest is implemented. We demonstrate the real-time
identification capability of the device by measuring the vapours of water, ethanol,
isopropanol, and ambient air.

Keywords: Random forest; MSS; Piezoresistive; Gas identification; Android;
Mobile phone
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Hardware implementation

The basis of our platform is a membrane-type surface stress sensor (MSS) that involves
piezoresistors laid out in a full Wheatstone bridge configuration as described in previous
papers [1,2] (Figure 1a). The MSS has a theoretical detection limit of ~0.1 mN /m. By
varying the properties of the coated polymer over each individual membrane such as its
hydrophobicity and functional groups, differences in polymer-gas affinity can be utilized
for identification of a wide range of VOC analytes.

Two piezoelectric micropumps (Bartels Microtechnik mp6) flowed sample gases and
ambient air over the MSS chip near their maximum rate of 0.3 mL/s [3]. A commercially
available analog to digital converter with a resolution of 632 nV (ADS1258 EVM) mea-
sured the differential output voltage of the MSS with a bias voltage of -1.0 V. An Arduino
Mega 2560 received this data via a Serial Peripheral Interface (SPI) to the analog-to-digital
converter. The Arduino Mega 2560 also controlled the micropump switching. A custom
breakout board mounted the MSS chip, which was then encased in a 3D-printed enclo-
sure designed to maximize gas flow over the polymer receptor layers (Figure 1b). The
Arduino Mega then sent the data to a consumer tablet (Google Nexus 7) over WiFi, using
an Arduino WiFi shield.
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Figure 1 System components and operation. a) Image of MSS in a four sensor array configuration. Each
MSS is coated with a different polymer exhibiting different gas interaction properties. b) The enclosure
containing the MSS sensor array chip and its electrical connections. €) Components in the device and the
directions of information and gas flow between them. Information about the sample arrives at the tablet for
analysis.

Data processing

Random Forests [4] allow short characterization times of arbitrary input; characterization
time is tunable through the size of the Forest. Each Forest can be tailored to complete its
task on hardware of arbitrary speeds while maintaining a real-time analysis. Once gener-
ated offline, this machine learning algorithm can be moved to a target platform for quick,
real-time analysis. Classification of data using a Random Forest simply involves traversal
of many decision trees, which can be multithreaded easily for fast computation on multi-
core processors. While this approach is sometimes coupled with Principle Component
Analysis (PCA) to determine better candidates for predictors [5], the device is capable of
identifying the chosen samples without requiring the full dataset in contrast to PCA. Volt-
age variations as a result of sample flowing through the device form unique curves when
measured over time. These curves have several identifying characteristics, which can be
extracted quickly by splitting the input into several windows, obtaining the difference of
their averages, and using these as predictors for the Random Forest analysis.

The Random Forest was trained on sample data collected with the device using Scikit-
learn [6] with Python 3.2. Converting the Forest into a custom, portable file format allows
a consumer handheld tablet to predict outcomes with the CPU to be the only limiting
factor in prediction speed.

Verification

The device was verified by identifying between ethanol, isopropanol, water, and ambient
air. A training set consisting of 196 sample/purge cycles (48 cycles per sample type, and
52 for ambient air) was used to train a 100 tree Random Forest. Though the ADS1258
measured at a rate of 460 samples per second (SPS) per channel, data transmission was
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Figure 2 Sample ethanol data. An example of measured data during read cycles. Ethanol was pumped to
the MSS on the first four segments (Sample point 0 to 1196) and ambient air was pumped to the MSS on the
latter four segments to purge the absorbed ethanol vapour.

limited to 4800 bytes every 2 seconds (approximately 400 samples per second per channel)
due to problems inherent within the Arduino WiFi module [7]. This caused the signal to
appear discontinuous (Figure 2).

The training data was found to be easy to differentiate as a series of slopes in a voltage
vs time series. Since the signal was divided evenly into eight segments per purge/sample
cycle, the slopes between the averages of each segment indicated the general trend of the
curve. Using these slopes as predictors for the Random Forest allowed the algorithm to
identify sample gases with a high degree of accuracy (Additional files 1, 2).

The data classification technique traditionally performs well at avoiding overfitting of
training data [4]. Using the out-of-bag estimator built-in to our Random Forest creation
library, the Forest scored approximately 0.939, representing a 93.9% accuracy in predicting
outcomes from inputs for which the Forest was not trained. The training set used to grow
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Figure 3 Training data channel response. An overlay of all input data used as the training dataset. Each
graph (a-d) corresponds to the data for one channel (1-4) on the MSS chip, while the colours correspond to
the analytes used.
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the Random Forest had a high amount of variability in its input (Figure 3), forcing the
Forest to identify a corresponding sample from a wide variety of input data.

Conclusion

We have demonstrated that the combination of an advanced algorithm (Random Forest)
and the optimized nanomechanical sensor (MSS) can achieve real-time gas identification
with commerical off-the-shelf hardware. Since the peripheral electronic components can
be miniaturized by the introduction of application specific integrated circuits (ASIC) or
field programmable gate arrays (FPGA), the present demonstration indicates the feasibil-
ity of integrating a real-time nanomechanical olfactory system into virtually any type of
mobile platforms such as smartphones. Future developments towards real world applica-
tions will include a larger dataset with proper selection of parameters from output signals,
effective receptor layers, and optimization of system components including the chamber
and pumps.

Additional files

Additional file 1: Android screenshots. Four screenshots of the Google Nexus 7 analyzing different samples. Each
sample shows a distinct pattern in its voltage measurements, and the Random Forest prediction is displayed beneath
each graph.

Additional file 2: Receiver operating characteristic (ROC) curve. ROC analysis of the generated Forest. Graph was
generated using PyLab by using out-of-bag error estimates per predictor to determine the sensitivity/specificity
response. The area under the water, ethanol, isopropanol, and ambient air curves are 0.9908, 0.9956, 0.9914, and
0.9900 respectively.
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