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Abstract
A brief overview of ion beam analysis methods and procedures in studies of materials
exposed to fusion plasmas in controlled fusion devices with magnetic confinement is
presented. The role of accelerator techniques in the examination and testing of
materials for fusion applications is emphasised. Quantitative results are based on
robust nuclear data sets, i.e. stopping powers and reaction cross-sections. Therefore,
the work has three major strands: (i) assessment of fuel inventory and modification of
wall materials by erosion and deposition processes; (ii) equipment development to
perform cutting-edge research; (iii) determination of nuclear data for selected
ion-target combinations. Advantages and limitations of methods are addressed.
A note is also given on research facilities with capabilities of handling radioactive and
beryllium-contaminated materials.

1 Introduction
Energy research driven by the quest for effective sources and means of electricity pro-
duction is crucial for sustainable development. Despite distinct progress in energy-saving
technologies and increasing number of installations based on fossil-free sources, the de-
mand for electricity generation is ever growing to ensure functioning of transport, light-
ing, tele-communication and all branches of industry which require stable and high power
supply. Simultaneously strong emphasis is on the safe and environmentally sound means
of energy generation, while the production volume may be limited by the access to natural
resources, currently available technologies, climate, and also by political situation.

Development of future technologies like Generation IV nuclear reactors and controlled
thermonuclear fusion has a long history. In both cases, integrated efforts in science and
technology are directed towards the construction and operation of reactor-class facilities.
Controlled fusion is a multidisciplinary field encompassing plasma and ion physics, re-
mote handling (RH) and radiofrequency (RF) technologies, nuclear physics and chemistry,
demanding civil engineering, radiation protection and countless aspects of materials sci-
ence and engineering. The latter extends from the composition and structure of concrete
for a base of a reactor containment to the detailed characterisation of the plasma-facing
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wall, i.e. plasma-facing materials (PFM) and components (PFC); both abbreviated jointly
in the following as PFMC. The surface state of the latter class of materials is studied mainly
by accelerator-based methods commonly called ion beam analysis (IBA).

In the interdisciplinary field of fusion research, the role of particle accelerators is at least
five-fold: (i) ion beam analysis (IBA) of materials retrieved from vacuum vessels of con-
trolled fusion devices; (ii) ion-induced simulation of neutron radiation effects in surfaces
of solids; (iii) provision of nuclear data for ion-material interactions; (iv) ion-induced neu-
tron generation for the material irradiation facility; (v) high current units in the neutral
beam injection system for plasma (deuterium and tritium: D and T) heating. The first
three aspects will be presented in the following sections with a focus on the role of ac-
celerator techniques in the examination and testing of materials for fusion applications.
Quantitative results can only be obtained using highly advanced laboratory equipment
and combined with robust sets of nuclear data, i.e. stopping powers and reaction cross-
sections. Therefore, the work has three essential strands: (a) assessment of fuel inventory
and modification of PFMC composition by erosion and deposition processes; (b) equip-
ment development to perform cutting-edge research; (c) determination of nuclear data for
selected ion-target combinations.

2 Controlled fusion and plasma-wall interactions: impact on materials
The goal of controlled thermonuclear fusion is to harness energy that powers stars: reac-
tions of light nuclei characterised by Q values of several MeV and high reaction rates:

D + D → T (1.01 MeV) + H (3.03 MeV), (1a)

D + D → 3He (0.82 MeV) + n (2.45 MeV), (1a)

D + T → 4He (3.52 MeV) + n (14.06 MeV), (2)

D + 3He → 4He (3.67 MeV) + H (14.69 MeV); (3)

the branching ratio of Reactions (1a) and (1a) is around one. Deuterium fuel is used in
most present-day devices, but the Q value (17.58 MeV) and the cross-section of the DT
process [1, 2], favours that mix of hydrogen isotopes as a fuel for a reactor in a future
power station. Reaction (3) has a significantly lower cross-section than Reaction (2) and,
currently cannot be considered because of a very limited availability of 3He.

Two major schemes of fusing nuclei have been developed. Inertial confinement fusion
(ICF) uses high power photon (laser) [3] or ion beams [4] focused on a small (∼1 mm in
diameter) D-T containing pellet placed in a vacuum chamber of a few meters in diameter.
Magnetic confinement fusion (MCF) is based on plasmas generated and maintained by
magnetic fields of a few T in toroidal systems [1, 5]. The latter scheme exploits two reactor
concepts: tokamaks [1, 6] and stellarators [7]. In either case, both ICF and MCF, under
terrestrial conditions the fusion plasma must be surrounded by walls of a vacuum vessel
and, the energy released must then be absorbed by wall structures: 20% related to 4He (α
particles) by PFMC [8], while the neutron energy (80% of the total) is to be transferred
to a 6Li-enriched blanket where the conversion to heat and tritium production will occur
[9, 10].

The energy confinement time (τE) of particles of up to 1.0-1.5 s is shorter than the plasma
discharge time. Consequently, particles escape the plasma and impinge on the wall. These
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Figure 1 Plasma-wall interactions: schematic illustration of erosion-deposition processes

are electrons, ions at different ionisation states and charge exchange neutrals (CXN). In
addition, there are neutrons generated in fusion reactions as well as electromagnetic radi-
ation with a broad energy spectrum from RF down to hard gamma and X-rays. They are
decisive for what is called plasma-wall interactions (PWI) which involve a huge range of
processes: physical sputtering, chemical erosion, reflection, implantation, gas retention,
desorption, melting, boiling, splashing, arcing, cracking, ionisation, recombination, com-
pound formation, activation and consequential transmutation [8, 11–13]. All of them are
dynamic arising from atomic, molecular and nuclear physics and chemistry.

A scheme of interactions is shown in Fig. 1. Eroded species are immediately ionised
and travel along the magnetic field lines. Eventually, if not pumped out, the migrating
species are re-deposited in a close or distant location with respect to the place of origin.
Re-deposition involves atoms of different elements originally eroded from the wall. It is a
simultaneous co-deposition in which also fuel atoms are included. As a result, mixed ma-
terial layers are formed. The composition and other properties of such deposition zones
significantly differ from those of the original substrates. Thermo-mechanical incompati-
bility between the substrate and co-deposit may lead to flaking and spalling-off of the layer
thus forming dust which constitute a major operational issue if large amounts of dust are
formed and, if such particles contain considerable fraction (a few atomic %) of fuel atoms,
especially radioactive tritium or neutron- activation products.

In short, PWI comprises all processes of energy and mass exchange between the plasma
and the surrounding surfaces. As a result, the plasma and the wall are modified with seri-
ous consequences for reactor operation. The plasma gets contaminated and loses energy,
while properties of PFMC and some crucial tools for plasma diagnosis (mirrors and win-
dows) are changed. This has an impact on the material lifetime and fuel inventory thus
for the reactor safety. PWI processes are both unavoidable and necessary. The wall pro-
vides vacuum conditions indispensable for operation, removes heat and - only under DT
reactor conditions - ensures final thermalization of helium ash to enable its pump out,
and absorption of energetic neutrons in the blanket for tritium productions and power
generation.

In-vessel materials must be, in the first place, compatible with vacuum and strong mag-
netic fields, while the list of requirements for PFC candidates comprises in addition: high
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thermal conductivity (λ), i.e. over 150 W,m–1 K–1, resilience to thermal shocks, low ero-
sion yield by plasma species, low sorption of hydrogen isotopes to limit fuel inventory,
high melting (Tm) and boiling (Tb) points, low-Z to minimise plasma energy losses by
impurities, low erosion rate, low affinity to fuel and to oxygen impurities towards the for-
mation of volatile products, affinity to oxygen impurities towards their gettering to form
solid oxides, low neutron-induced activation. None of the known substances can fulfil
such requirements, especially that some of them are contradictory. Therefore, the mate-
rial selection is based on the approach that properties should change as little as possible
under plasma impact.

The major materials of interest for PFC are beryllium (Be), carbon (C) in the form
graphite or carbon fibre composites (CFC), and tungsten (W). In addition, molybdenum
(Mo) is important as material for so-called first mirrors, i.e. plasma-facing materials in
optical diagnostics. Crucial advantages and drawbacks of respective wall materials are
compiled in Table 1, while very detailed characteristic can be found in [8]. Graphite and
several types of CFC have been used in toroidal devices since seventies of the 20th century
because of their excellent power handling capabilities. Issues related to the erosion rates
and the formation of fuel-rich co-deposits were known, but their dramatic seriousness
was recognised after full D-T campaigns in TFTR [14, 15] and JET [16–21] operated with
carbon walls: nearly 30% of the injected tritium was retained in the vessel, especially in
the remote areas of the divertor, i.e. places shadowed from the direct plasma line-of-sight.
Such locations are very difficult to reach by any cleaning method [18, 20, 22]. No efficient
means of fuel removal have been developed and the use of carbon in a D-T fusion reac-
tor had to be reconsidered [22–27]. A large scale-test with all-metal walls was decided at
the largest tokamak in the world: the Joint European Torus (JET) [28–30]. Carbon PFC
were removed and replaced by solid Be limiters and Be coatings on the main chamber
wall [31, 32], while W components (bulk metal and coatings on CFC tiles) were installed
in the divertor [32–34]. The operation of JET with the ITER-like wall (JET-ILW) started in
2011 and, it was clearly shown that the elimination of carbon sources resulted in a signifi-
cant decrease of fuel retention [35–42] and dust generation [43–48]. In a consequence, the
ITER Organisation decided to abandon carbon components in the divertor and prepare
for operation with Be panels in the main chamber and tungsten in the divertor [49].

Table 1 Key properties of C and metals as wall materials and diagnostic components

Element Advantages Drawbacks/Limitations Remarks

C Low-Z. Resilience to thermal
shocks and no melting λ of
some CFC > 300 Wm–1K–1.

Chemical erosion by fuel
atoms, CxHy formation, high
erosion rate and fuel inventory
in co-deposits.

PFMC in most tokamaks
[8, 14–21, 27, 50–55] and stellarators
[56–58] because of excellent power
handling capabilities.

Be Low-Z, no chemical erosion Low Tm and high sputter yield. Used in JET-ILW in the main chamber
wall [29, 31, 59]; the same decided for
ITER wall [49].

W High Tm and low sputter yield
by fuel

High-Z, risk for plasma
contamination and disruptions.
Activation and transmutation.

ASDEX Upgrade wall and divertor
[60, 61]. JET-ILW divertor
[29, 32–34, 62]; the same decided for
ITER divertor [49].

Mo High Tm and low sputter yield
by CXN

High activation. Tested candidate for first mirrors in
ITER diagnostic systems [63–67]
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The major research objectives are to determine: (i) the lifetime of PFMC; (ii) in-vessel
fuel accumulation, i.e. to obtain quantitative mapping of the distribution of D and T;
(iii) quantity and properties of dust with particular emphasis on the identification of
sources, generation pathways and fuel content; (iv) plasma impact on diagnostic compo-
nents which are crucial for plasma characterisation and machine protection. All of them
are decisive for reactor economy and safety. As such, these are key points in the licensing
process. Conditio sine qua non for conclusive studies is the access to materials (speci-
mens from diverse locations: wall tiles, probes, dust) retrieved from the vacuum vessel af-
ter experimental campaigns. Research requires a huge variety of material characterisation
methods. It directly implies the access to laboratories with relevant apparatus, competent
research teams and – in many cases – capabilities and certificates for handling radioactive
materials: T-contaminated and activated.

3 Analysis methods and instrumentation
3.1 Analysis: needs and methods
Over the years, more than fifty different material characterisation techniques have been
used in the PFMC research: ion, electron, neutron and optical spectroscopies, methods
based on probing solids with magnetic field, sound waves, mechanical force or thermal
means applying either a steady temperature rise or shocks by flash heating. The variety of
probing (‘signal in’) and detection means (‘signal out’), their broad energy spectrum and
a range of physical processes involved in the interactions create a huge number of “sig-
nal in – signal out” combinations, and – by this – research opportunities. Nearly every
combination may actually be applied in a certain area of material characterization. How-
ever, only most efficient, methods for analyses of PFMC are mentioned in the following,
i.e. techniques capable of sensitive and selective quantitative determination of the content
and distribution (in-depth and lateral) of a wide range of elements and, in many cases,
their particular isotopes present in the examined materials. Capabilities for mapping sur-
face species on large areas on the tiles (e.g. 15 × 20 cm) are also required in many cases.
Compositional analyses must cover a broad range of species which are present in the wall
and diagnostic components, fusion fuel and gases injected for auxiliary plasma heating,
plasma edge cooling, disruption mitigation, wall conditioning, or as markers (tracers) in
material migration studies. As a result, the list extends from H, D, T, 3He, 4He and other
noble gases (Ne – Xe), isotopes of Li, Be, B, C, N, O, F to heavier species such as Al, Si to
Cr, Fe, Ni and then to W, Re; even Au is to be taken into account. The role and origin of
respective species in the reactor is addressed in Table 2 in which also the information on
relevant analysis methods is conveyed.

The requirement for lateral mapping and depth profiling of such diverse compositions
are met by IBA methods. Their detailed description with the underlying physics basis
can be found in [68, 69], while the role in PFMC analysis has been addressed in overview
articles [70–72]. IBA is based on the irradiation of a solid target with an ion beam followed
by a detection and analysis of energy and/or mass spectra of signals emitted from the
surface: reflected primary ions, products of nuclear reactions, recoiled atoms, photons
(from visible to X and gamma rays), sputtered species such as secondary ions (monoatomic
and molecular) and neutrals. Dependent on the ion (type, energy) – signal combination
there is a number of methods governed by different physical processes.

• Rutherford Backscattering Spectrometry (RBS) mainly with 4He+ in the 1.5 – 3 MeV
energy range.



Rubel et al. EPJ Techniques and Instrumentation            (2023) 10:3 Page 6 of 21

Table 2 Species to be analysed/determined and their role in a reactor

Species Origin and role in a reactor IBA Method Reaction (of
practical use)*

Remarks and references

H Wall cleaning -
conditioning gas

NRA, ERDA 1H(15N,4He)12C H is always present in vacuum
systems; information depth below
1 μm; strong detrapping by the
15N beam.

D Fuel NRA, ERDA,
EPS

2D(3He,1H)4He NRA is the main technique in D
analysis [70–80]. Depth profiling in
C-H layers to over 30 μm at 6 MeV
[73]

T Fuel NRA, ERDA,
AMS

3T(12C,4He)11B
3T (12C, 1H)14C
3T (D,4He)n

Use of IBA is limited. Low
sensitivity of 12C-3T reactions
12C-3T reactions tried on JET
materials [81], while the 2D-3T was
used on TFTR tiles [82].
AMS in trace analysis [83].

3He Minority gas for ICRF
heating

ERDA [84]

4He Ash of D-T reaction;
Wall cleaning -
conditioning gas

ERDA [84]

6Li, 7Li Li-beam diagnostic, wall
coatings

NRA, ERDA,
PIGE

7Li(1H,nγ )8Be

9Be Wall material NRA, ERDA 9Be(3He,1H)11B
9Be(2D,1H)10Be
9Be(2D,4He)7Li

[20, 71, 72, 75, 77, 85]

10Be Be migration marker AMS Marker n-activated 9Be tile [86]

10B and 11B Wall conditioning by low
plasma in B2H6, B(CH3)3 or
evaporation from B10H14

NRA, ERDA 11B(1H,4He)8Be
11B(3He,1H)13C

Analysis of PFMC from boronised
machines [87–91]

12C Wall material NRA, EPS,
ERDA

12C(3He,1H)14N
12C(2D,1H)13C
12C(1H,1H)12C

[18, 70–72, 77, 78, 92]
12C(2D,1H)13C for C analysis on Be
targets [85]

13C Tracer in C migration
studies

NRA, EPS,
ERDA

13C(3He,1H)15N
13C(1H,1H)13C

[93–96]

14N Edge cooling NRA, ERDA 14N(2D,1H)15N
14N(2D,4He)12C

[85, 93, 97, 98]

15N Tracer NRA, ERDA 15N(1H,4He γ )12C [96, 98]

16O Major impurity RBS, EPS, NRA,
ERDA

16O(2D,1H)17O
16O(1H,1H)16O

[93]

18O Tracer for in-vessel
oxidation studies

NRA, ERDA 18O(1H,4He)15N [65, 78]

20Ne Edge cooling agent ERDA, RBS [84, 97]

21Ne, 22Ne Considered as tracers ERDA, RBS RBS only on light substrates

Al Impurity from structural
material of RH systems

RBS, PIXE,
ERDA

Si Component of in-vessel
diagnostics

RBS, PIXE,
ERDA

SiH4 (SiD4) used for wall
conditioning (siliconisation)
[99]
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Table 2 (Continued)

Species Origin and role in a reactor IBA Method Reaction (of
practical use)*

Remarks and references

Ar Edge cooling agent RBS, PIXE,
ERDA

[94]

Fe, Cr, Ni Vacuum vessel and
antennae materials: Steel,
Inconel

RBS, PIXE,
ERDA, MEIS

Separation with RBS is difficult.
ERDA and particularly MEIS allow
separation of Cr and Ni
[100]

Cu Impurity from NBI system RBS, PIXE,
ERDA

PIXE in presence of Fe, Cr, Ni

Kr Edge cooling agent RBS, PIXE,
ERDA

[94]

Mo Vacuum vessel and
antennae materials: Steel,
Inconel;
First mirrors

RBS, PIXE,
ERDA

W Wall material RBS, PIXE,
ERDA, MEIS

MEIS: [100, 101]

Re Proposed addition to W RBS, PIXE,
ERDA

Only PIXE in the presence of W

Au In-vessel diagnostics:
bolometers, coated
mirrors

RBS, PIXE,
ERDA

*Only reactions of practical use are listed, i.e. reactions with the detection limit of minimum 5× 1014 cm–2 .

• Elastic Backscattering Spectroscopy (EBS) employing enhanced cross-sections for
scattering of 4He+ from C and O in the energy range 3-5 MeV.

• Non-Rutherford Enhanced Proton Scattering (EPS) with H+ in the 0.5 – 2.5 MeV
range.

• Nuclear Reaction Analysis (NRA) – a huge variety of analytical capabilities using
low-Z ion beams: mainly 3He+ (0.6 – 6 MeV) and H+, but also D+, 12C, 15N and 16O
ions. Respective nuclear reactions are in Table 2.

• Particle Induced X-ray Emission (PIXE) and/or Gamma Emission (PIGE) using a
primary 1.5 – 4 MeV beams of H+, 3He+, 4He+.

• Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA) with 4He+ or the high
ion version (ToF- HIERDA) using for instance multiply charged ion beams of Cn+,
Sin+, Brn+ or In+ beams. Depth profiling extends from 300 nm in heavy metal targets
up to 800 nm in low-Z materials.

• Accelerator Mass Spectrometry (AMS) in trace analysis of T, 10B, 14C.
• Medium Energy Ion Scattering (MEIS) using a 50 – 400 keV 4He+ beam.
• Secondary Ion Mass Spectrometry (SIMS) with primary beams of Ar+, Cs+ or O– of a

few keV. The method is sensitive but its use is limited because the quantification in
complex mixed-material co-deposits is difficult.

For most techniques, besides ERDA, the standard lateral resolution determined by beam
diameter is in the range 0.6-1.2 mm. Detailed mapping of species with a resolution of
1-30 μm is carried out (if needed) with μ-RBS, μ-NRA, μ-EPS and μ-PIXE, i.e. using
micro-beams formed in a quadrupole-equipped beamline. In ERDA or HIERDA which are
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based on the target irradiation at a shallow angle (usually 22.5°) the beam spot is elongated:
1 × 4 mm.

Taking into account a range of ion beams, beam spot size, broad energy spectrum, tens
of nuclear reactions and data processing software, the “toolbox” offers a huge number of
analytical options. It is also clear that there is no single technique to address all needs
taking into account the differences in the information depth and sensitivity for detecting
respective species because these parameters are decided by energy-dependent stopping
powers in ion-target systems, and by cross-sections of individual processes.

The IBA methods are complementary to each other and, they are complementary to
other techniques for the characterisation of PFMC and fuel inventory. In the case of light
isotopes, particularly in fuel retention studies, 3He-based NRA plays a prominent role. It
is the only method to determine quantitatively the areal distribution and depth profiles
of deuterium down to tens of micrometres in light substrates [73]. Micro-NRA facilities
deuterium mapping in regions with a highly not uniform content of that isotope [102]
and, even in single grains of dust [74, 103–105]. NRA complements results of the gas bal-
ance assessment in fusion devices [50, 79, 106, 107] and thermal desorption spectroscopy
(TDS) data [108] to obtain an overview of the global fuel retention. Determination of the
fuel content in PFMC is crucial to obtain reference targets in the development of in-situ
techniques: laser-induced desorption (LIDS), breakdown (LIBS) or ablation (LIAS) spec-
troscopy techniques [109–114].

In the third column of Table 2 ERDA is listed in every set of useful/recommended tech-
niques. ToF-HIERDA is an extremely powerful tool in the determination of low-Z iso-
topes on surfaces, especially when using a gas ionization chamber (GIC) detector [115],
as it has been shown in studies of PFMC and wall probes from the TEXTOR [89, 90], JET
[77], COMPASS [91] tokamaks, and from laboratory experiments on mirror testing [116].
A great advantage is a simultaneous analysis of H, D, 3He and 4He [84]. High mass resolu-
tion facilitates conclusive results in material migration studies which involve the injection
of tracer gases labelled with rare isotopes such as 13CH4 [90], 15N2 [90], 18O2 [65, 84] when
it is essential to discriminate between the main and minor isotopes, e.g. 12C eroded from
PFMC and the injected 13C tracer. The GIC detector opens possibilities for applying other
tracers: 10B2H6, 21Ne, 22Ne. Figure 2 shows a spectrum recorded with a 42 MeV 127I8+

beam on the PFC surface retrieved from the TEXTOR tokamak after experiments with
13CH4 and 15N2 tracers.

3.2 Ion-induced damage in materials
The other role of accelerators in fusion research is in the ion-induced simulation of neu-
tron damage in materials [10, 116–118]. The damaged surface structure has a major im-
pact on fuel retention in PFC and, also on optical performance of crucial diagnostic com-
ponents like so-called first mirrors, i.e. metal mirrors acting as plasma-facing compo-
nents in all optical plasma diagnosis systems (spectroscopy and imaging) in ITER, i.e. the
reactor-class machine under construction. The impact of irradiation with H, 4He (trans-
mutation simulation) and Mo, Zr, Nb (simulation of n-induced damage) on the optically
active layer of Mo mirrors has been presented [116, 117]. There are three key points in
such study: (i) the selection of irradiation conditions by H, 4He and high-Z species to in-
fluence changes in the optically active layer (OAL) of the mirror, i.e. maximum 20 nm of
the outermost surface; (ii) the irradiation and determination of reflectivity changes; (iii)
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Figure 2 ToF HIERDA spectrum recorded after tracer experiments for the limiter tile of TEXTOR

Figure 3 ToF HIERDA depth profiles of H and He following two types of irradiation: (a) irradiation only with H;
(b) irradiation with He followed by H

ToF HIERDA measurements of H and 4He depth profiles, their changes in time, and the
dependence on the irradiation sequence. Plots in Fig. 3(a) and (b) show, respectively, depth
profiles of H and He following the irradiation of polycrystalline Mo mirrors only with a
2 keV H+ beam 14 × 1016 cm–2 and, first with 5 × 1016 cm–2 of 2 keV 4He+ and then with
14 × 1016 cm–2 of 2 keV H+. The results indicate that the damage produced by He has a
strong impact on the amount and depth distribution of hydrogen: the H profile is deeper
when combined with the implantation of He. Secondly, the H retention is doubled after
the He+ irradiation in comparison to the irradiation with H+ only: from 2% to 4% atomic.

3.3 Instrumentation
A pre-requisite for the advanced accelerator-based material research, either analysis or
modification, is a laboratory (or a network of laboratories) with equipment providing
a broad range of capabilities regarding the beam composition, energy, current, particle
detection and, the control of experimental parameters: gas feed, temperature etc. An
overview of accelerator laboratories with a detailed account on the facilities relevant to
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Figure 4 Tandem Laboratory at the Uppsala University: (a) the accelerator; (b) analysing magnet; (c) six
beamlines with the description of their main purpose

studies of fusion-related materials has been given in [72]. Among them, there are six lab-
oratories capable of handling and analysing Be- and T- contaminated materials from JET:
from full not sectioned Be tiles (12 cm×20 cm) to smaller samples, and even to individual
dust particles. Work procedures with such materials (handling, transport etc.) have been
addressed in [71, 72], while very details are in [119].

New developments of the instrumentation are crucial to enhance and to broaden re-
search capabilities. Images in Fig. 4 show the 5 MV pelletron tandem (National Electro-
static Corporation, NEC) and the beamline arrangement at the Tandem Laboratory, Up-
psala University, Sweden. Two gas and two sputter ion sources allow for the formation of
beams in all mass ranges, from low-Z (H - Li), medium-Z (Be – Si) and, with some excep-
tions, high-Z up to Au. There are six beamlines for standard IBA (PIXE, RBS, NRA and
ToF ERDA with GIC detector [115]) and very specific tasks like 15N NRA with a gamma
detector, AMS used mainly in the 10Be [86] and 14C analyses, μ-beam with PIXE, RBS,
NRA. A separate line is dedicated to material modification by ion irradiation, while the
newly developed system on the sixth beamline is for in-situ and in-operando research:
Set-up for In-situ Growth, Material modification and Analysis (SIGMA) [120, 121].

As already mentioned, all processes involved in PWI are dynamic. Direct in-situ ma-
terial studies inside fusion devices are technically either very challenging or not possible
at all. Some fundamental processes can therefore be investigated under controlled labo-
ratory conditions. The SIGMA system, presented in Fig. 5(a) and (b), has been designed
to facilitate material modification with in-situ IBA employing both light and heavy beams
for RBS, EPS, EBS, NRA, PIXE, PIGE, ToF-ERDA at the 2- 50 MeV energy range. Due
to large viewing ports optical characterization is also carried out. Several gas feeds, three
evaporation cells, a sputter gun (1-5 MeV) enable diverse material modification scenar-
ios. Sample annealing to 1100°C combined with gas phase analysis offers a wide range of
experimental possibilities in studies of fuel retention in fusion-relevant targets.

Two other accelerating systems at Uppsala University further extend research on mate-
rial modification [121]. With a 350 kV implanter (Danfysik) equipped with three change-
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Figure 5 SIGMA system shown from the both sides (a) and (b) of the apparatus: the vacuum chamber – 1;
viewing ports on both sides of the chamber – 2 and 2’; triple evaporator – 3; residual gas analyzer – 4; sample
manipulator – 5; ion gun – 6; load-lock chamber – 7

able ion sources (gas, oven-based, sputter) the simulation of neutron-induced damage by
means of light and heavy ion irradiation is carried on mirrors tested for diagnostic and
heating systems in future fusion devices [116–118]. Two other beamlines are for: (i) ToF-
MEIS and (ii) low energy RBS and NRA. The application of MEIS [100, 101] ensured sen-
sitive high resolution determination of surface composition and, has led to new topics in
material modification and migration studies.

A low energy ion gun (up to 10 kV) in another system equipped with two chambers
is the base for ToF Low Energy Ion Scattering (ToF LEIS), Auger Electron Spectroscopy
(AES) and Low Energy Electron Diffraction (LEED) [122]. Material modification capa-
bilities annealing, sputtering and in-situ growth of thin layers. In all materials analyses,
the quantification of composition is essential. In the case of IBA, it relies on the energy
dependent cross-sections in the interactions of fast particles with matter.

4 Stopping and reaction cross-sections
The energy deposition by energetic charged particles in matter is conveniently described
by the energy deposition per unit path length, commonly referred to as stopping power
(S). Dependent on the nature of the interaction, i.e. whether energy is deposited by elas-
tic interaction between ion and target nuclei or by excitation of the electronic system of
the target, one refers respectively to electronic (Se) or nuclear (Sn) stopping power [123].
By a convenient transformation one obtains the stopping cross section by normalization
by the atomic density N, which yields a quantity independent of the mass density of the
target material. In any representation, accurate knowledge on the specific energy deposi-
tion of charged particles forms a key ingredient for quantification in ion beam analytical
methods, by providing depth scales, in ion implantation by allowing for a prediction of
particle range and in modelling of e.g. sputtering processes and defect formation [69, 124].
At high energies, the interaction with the target electronic system has been already early
modelled successfully by Bethe [125] with subsequent further improvements [126–128].
Towards lower energies, interaction becomes more complex even for the lightest ions, as
details of the electronic structure of the material were predicted to affect the energy depo-
sition [129]. These effects of the density of states of the irradiated material were later been
confirmed in several experiments for metals with excitation thresholds for specific elec-
tronic states [130, 131] as well as for insulators featuring a band gap [132, 133]. Both phase
effects [134], and even more relevant strong effects arising from chemical disorder [135]
have been reported. They are important in complex material systems at the PFC surface



Rubel et al. EPJ Techniques and Instrumentation            (2023) 10:3 Page 12 of 21

modified due to constant erosion and re-deposition. For light ions different from protons,
also projectile excitation becomes increasingly relevant [136, 137] still challenging pre-
dictions up to date [138, 139]. In a similar fashion as calculations feature an increasing
complexity towards low ion energies, the same applies to experiments: stopping powers
are experimentally most straightforwardly obtained in transmission experiments [140],
for which, at lower energies, however the deteriorating influence of surface contamina-
tions increases. In backscattering geometry, effects of surface contamination are drasti-
cally reduced, however, at lower energies, effects of plural and multiple scattering affect
the spectra, complicating the analysis, requiring accurate simulations [141, 142]. An addi-
tional option, available when sufficiently thin films of the target material cannot reliably be
obtained is evaluation from the height of a spectrum recorded for a thicker film or bulk of
the material of interest [143]. In all cases, however, material purity is of utmost importance,
which is challenging to guarantee for thin layers near a surface [144]. For all the reasons
above, the database of electronic stopping powers hosted by IAEA [145, 146] features only
a limited number of datasets at low ion energies. Also, the materials, for which stopping
powers have been measured or calculated is found limited [147]. The most commonly
employed source for tabulated stopping powers, the semi empirical SRIM-code [148], is
thus challenged in its predictive capacity. For many aspects of research on plasma-wall in-
teraction is it, however, these low energies, which are most relevant. Low ion energies are
not only relevant to model sputtering, fuel retention or defect formation, but are similarly
necessary for quantification in analytical approaches such as Low- and Medium Energy
Ion Scattering (LEIS & MEIS) [122, 149]. Table 3, summarizes the status quo for a number
of elemental target materials highly relevant for next generation fusion devices, indicating
the almost complete absence of data at low energies, as well as the presence of an ambi-
guity of available data.

Plots in Figs. 6 and 7, show respectively detailed data for H in Be and He in W, thus
illustrating the limited availability and reliability of reference data at intermediate energies
or their complete absence at low energies respectively. Recently, the development of new
computational approaches such as time-dependent density functional theory [150, 151]
or abandoning the modelling of a homogeneous electron gas [152] provides successively
better predictions for specific systems, but commonly with high computational expenses.
Dedicated experiments providing a better insight into the dependence of stopping powers
on Z2 [153] or specifically targeting materials for PFMC [154] enhance simultaneously the
predictive power of semi-empirical approaches. Nevertheless, due to the large number
of relevant ion-target combinations, energies and experimental approaches, a concerted

Table 3 Account on availability of the stopping powers data for selected elements

Element H ions He ions

Be No data below 10 keV – no reliable data
below 1 MeV.

No data below 200 keV.

C High number of datasets High number of datasets; limitations at low
energies.

Mo No data below 50 keV – data spread in the
stopping maximum.

Only one low-energy dataset – spread in
the stopping maximum.

W Only one dataset below 100 keV. Only one dataset below 300 keV; two
datasets differing by 10% at classical IBA
energies.
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Figure 6 Data availability of experimental reference electronic stopping cross-sections for hydrogen on
beryllium

Figure 7 Data availability on experimental reference electronic stopping cross-sections for helium-4 on
tungsten

action - as proposed by a number of research groups in the CRP-F11023 coordinated by
IAEA - will be necessary to build up comprehensive knowledge for the relevant materials
in the relevant energy range on the stopping of H and He in Be, Fe, Mo and W.

Stopping powers are crucial for depth profiling, while scattering, recoil and reaction
cross-sections are crucial for the quantification of the number and areal density of the tar-
get constituents. In other words, for quantitative material analysis stopping powers need to
be combined with cross-sections. E. Rutherford [155] first suggested viewing the incoming
particle and nucleus as small positively charged particles that interacts by Coulomb inter-
action and can very accurately be used to model the interactions in RBS that is named
after him. This has since been complemented by a screening function, as suggested by
[156, 157], which accounts for the fact that distance of interactions between the incom-
ing ion and target atom will be so large that some electrons would effectively shield the
nucleus. This is the situation for HIERDA where all elements can be detected. It is shown
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Figure 8 HIERDA spectrum for a PFC from the boronised TEXTOR tokamak after experiments involving the
13C marker and edge cooling with 14N2 puffing

Figure 9 Nuclear reaction spectra obtained with a 3 MeV 3He+ beam for 12C(3He,p)14N and 9Be(3He,p)11B.
The figure illustrates an overlap of the pi features making the analysis of 12C on the 9Be surface challenging or
impossible

in Fig. 8 for a PFC surface composition following experiments in the boronised TEXTOR
tokamak (carbon wall machine) [158] involving the injection of 13C material migration
marker and plasma edge cooling with 14N2. However, the technique effectively traces only
a very surface layer, while thicker layers are often to be examined.

At energies were the closest distance between the two particles becomes small, the
strong interaction must also be taken into account. In such situation all different interac-
tions must be considered separately thus complicating the analysis. An example is in Fig. 9
showing a “forest” of peaks in the spectra recorded in separate studies of Be and C. The
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spectrum of protons emerging from the 12C(3He,p)14N process is “hidden” in the products
of the 9Be(3He,p)11B reaction.

For light species nuclear reaction cross-sections are crucial, especially those for 3He-
induced processes with 7Li, 9Be, 10B, 11B, 12C, 13C, also 14N, 15N and 16O in the 1-6 MeV
energy range. That list takes into account isotopes used for PFC materials, wall condition-
ing agents, plasma edge cooling and most common impurity species. It is worth noting
that the need for data for low-Z atoms stems not only from the PFC studies, but also in
medical research (radiotherapy) and space radiation protection [159]. The cross sections
for these interactions cannot be calculated analytically but requires a large set of measure-
ments. In some situation old cross sections originally measured to explore the structure of
the nucleus [160] can be repurposed but there is still an ongoing development to increase
the data sets [161–164]. For instance, the 9Be(3He,p)11B reaction had been studied already
in the fifties of the 20th century at the projectile energy of 4.5 MeV [160] and, new data sets
have been recently published: at 135° in the 1 - 2.5 MeV range [161] and from 107° - 164°
in the 1.8 - 2.7 MeV range [162]. A data base for elastic (non-Rutherford) backscattering
cross-sections is also important and, it is growing [165, 166]. For organising the available
datasets IAEA has created the IBANDL database [167] and for some selected combination
of particles of the existing cross sections has been combined with models of the interac-
tions in the SigmaCalc [168] program that for limited some reactions can provide very
good cross-sections.

5 Concluding remarks
The accelerator-based analysis and modification of materials is not an isolated or a pas-
sive strand of fusion research. The results directly contribute to decisions regarding the
wall composition and diagnostic planning in the current and future devices, e.g. ITER and
DEMO. It is a driving force for improvements and development of analytical capabilities
(nuclear data sets, detectors, chambers) to ensure cutting edge research. To keep this sta-
tus, continual development of the methods in accordance with what was outlined above
is required. Especially the role of in-situ and in-operando systems for the material modi-
fication and analyses will be crucial for a deep insight into the dynamics of fuel retention
and segregation of metals in materials relevant for PFC such as EUROFER.
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104. Fazinić S, Tadić T, Vuksić M et al. Ion micro-beam analysis of dust particles and co-deposits from JET with ITER-like
wall. Anal Chem. 2018;90:5744. https://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b00073.
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