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Abstract

Background: The functionality of atomic force microscopy (AFM) and nanomechanical
sensing can be enhanced using higher-mode microcantilever vibrations. Both methods
require a resonating microcantilever to be placed close to a surface, either a sample or
the boundary of a microfluidic channel. Below a certain cantilever-surface separation,
the confined fluid induces squeeze-film damping. Since damping changes the dynamic
properties of the cantilever and decreases its sensitivity, it should be considered and
minimized. Although squeeze-film damping in gases is comprehensively described, little
experimental data is available in liquids, especially for higher-mode vibrations.

Methods: We have measured the flexural higher-mode response of photothermally
driven microcantilevers vibrating in water, close to a parallel surface with gaps ranging
from ~200 μm to ~1 μm. A modified model based on harmonic oscillator theory
was used to determine the modal eigenfrequencies and quality factors, which can
be converted into co-moving fluid mass and dissipation coefficients.

Results: The range of squeeze-film damping between the cantilever and surface
decreased for eigenfrequencies (inertial forces) and increased for quality factors
(dissipative forces) with higher mode number.

Conclusions: The results can be employed to improve the quantitative analysis of AFM
measurements, design miniaturized sensor fluid cells, or benchmark theoretical models.

Keywords: Microcantilever; Dissipation; Squeeze-film damping; Higher eigenmode;
Photothermal excitation; Eigenfrequency; Quality factor; Fluid–structure interaction

PACS: 07.10.Cm (Micromechanical devices and systems); 46.40.Ff (Resonance and
damping of mechanical waves); 07.79.-v (Scanning probe microscopes and components);
07.07.Df (Sensors (chemical; optical; electrical; movement; gas; etc.); remote sensing)
Introduction
Damping is an important design criterion for micro- and nanometer sized resonators,

because surface forces dominate body forces at small dimensions [1]. Immersing a

resonator, e.g., a microcantilever, in fluid drastically changes its dynamic properties.

The eigenfrequencies and quality factors decrease due to hydrodynamic forces, which

can be decomposed into an inertial (added mass) and dissipative (viscous damping)

term [2]. Additionally, placing the resonator close to a solid surface leads to squeeze-

film damping, where displacement of the fluid between the resonator and the surface

during each vibration period introduces additional added mass and viscous damping

[3]. The damping occurring by both mechanisms has direct impact on atomic force
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microscopy (AFM) and dynamically operated nanomechanical sensors. With progres-

sing miniaturization, squeeze-film damping starts to dominate other dissipative effects

and, thus, needs to be considered and characterized [4].

Furthermore, higher modes of vibration are increasingly used. In multifrequency

AFM imaging, higher modes allow the material characteristics, e.g., mechanical,

magnetic or electrical properties, of the substrate to be measured [5]. To reduce

squeeze-film damping, AFM samples have been placed on pillars [6], or cantilever

geometries have been optimized by focused-ion beam milling [7]. In cantilever-based

sensor applications, the use of higher vibrational modes provides increased mass

sensitivity [8] and allows the elastic properties [9] and the position of adsorbates [10]

to be disentangled. Squeeze-film damping needs to be considered below a certain

critical dimension of the AFM cantilever tip or container in which the cantilever sensor

is mounted.

To our knowledge, squeeze-film damping of micrometer-sized cantilevers vibrating in

higher modes in liquid has not been measured to date. In contrast, it has been

thoroughly investigated for resonators immersed in gases, because of its importance for

micro-electromechanical systems (MEMS), e.g., torsional mirrors [11] or cantilevers

[12]. Even though, less attention has been paid to the problem in liquids, both analyt-

ical and numerical methods have been employed to model the behavior of cantilevers

immersed in liquid and vibrating in close proximity to a surface. Analytical approaches

[13] account for dissipative and inertial effects in the liquid, but due to the assumption

of a two-dimensional flow field higher modes of vibration were not considered. Numer-

ical approaches can effectively describe different cantilever-surface inclination angles,

vibrational modes, and varying external driving forces [2,4,14]. However, semi-analytical

equations describing the hydrodynamic load acting on cantilevers under squeeze-film

damping only consider the fundamental mode of vibration [13,14]. Squeeze-film damping

in liquid is governed by two dimensionless quantities, the Reynolds number, Re, and the

normalized gap, H [13]:

Re ¼ πρf f nb
2

2ηf
; H ¼ g

b
; ð1Þ

where b is the width of the cantilever, ρf the fluid density, ηf the fluid viscosity, fn the

cantilever eigenfrequency in liquid, and g the gap between the cantilever and the

surface (see Figure 1). The cantilever width, b, is the dominant length scale of the flow
Figure 1 Diagram of a microcantilever vibrating close to a surface. A cantilever of length L, width b
and thickness h, is vibrating at flexural mode n = 4. The cantilever-surface gap g was varied from ~200 μm
to ~1 μm. Liquid confined in the gap causes additional hydrodynamic forces due to squeeze-film damping.
The amplitude of vibration is drawn not to scale.
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[13]. If the vibration amplitudes are orders of magnitude smaller than b, i.e., Keulegan-

Carpenter numbers « 1 [15], the effect becomes independent of the amplitude [16].

Furthermore, the continuum hypothesis is valid because the mean-free-path of the

molecules in liquid is very small compared to the dominant length b and the gap size g,

i.e., Knudsen numbers « 1 [15].

Experimental investigations of cantilevers with dimensions ranging from centimeters

to micrometers, immersed in water, buffer, organic solvents and oils are reported in the

literature [3,15-19]. However, all experimental studies on microcantilevers in liquid and

close to a surface, were limited to the fundamental mode (n = 1) [17-19]. Here we

present the full spectral response of microcantilevers vibrating in water at different

distances from a polydimethylsiloxane (PDMS) surface. PDMS was selected because of

its abundant use for the fabrication of microfluidic devices. Spurious-free resonance

spectra were obtained by driving the microcantilevers photothermally [20], and several

higher flexural modes of vibration were characterized.
Results and discussion
To measure the effects of squeeze-film damping, a tipless microcantilever (250 μm ×

35 μm × 2 μm) was placed close to a surface and the gap, g, was varied from ~200 μm

to ~1 μm using a motorized stage (Figure 1). Experiments using longer cantilevers are

reported in the Additional file 1. Photothermal excitation was employed to drive the

microcantilever to resonance. Amplitude and phase spectra were acquired by sweeping

an excitation frequency range from 0.5 kHz to 800 kHz and recording the correspond-

ing cantilever response. As shown in Figure 2 for different cantilever-PDMS surface

gaps, the spectra span four flexural modes of vibration. The influence of the cantilever-

surface gap became substantial for H = g/b < 1, causing the resonance peaks to shift

towards lower frequencies and broaden significantly (decreasing quality factors). A

model, consisting of a sum of damped harmonic oscillators and terms considering the

measurement setup (see Methods, Equation 4), described the experimental phase data

with good accuracy (Figure 3). Applying this model to the data, allowed the eigenfre-

quency, fn, and quality factor, Qn, of each mode n, to be extracted at different

cantilever-surface gaps, g (Figure 4).

To compare cantilevers from different chips, fn and Qn were normalized to the values

indicated by experimental data recorded far from the surface, where its presence had

no influence (see Methods). As shown in Figure 5a, due to squeeze-film damping the

eigenfrequencies of all modes decrease as the cantilever-surface gaps become smaller.

Further, even though some of the differences are slight, it is clear that higher-mode

eigenfrequencies are less influenced by the proximity of the surface. In contrast, the

higher-mode quality factors are affected when the cantilever-surface gap is still

comparatively large (Figure 5b) and the fundamental mode is influenced least. To

quantitatively compare the effects, a characteristic cantilever-surface gap gn* was

defined for the fundamental mode as g1* = b/2 = 17.5 μm (H1* = 0.5). At g1* the frequen-

cies (mean ± SD) of the fundamental vibration dropped to (93.4 ± 0.7)% and the quality

factors to (77.8 ± 7.5)% of the initial value. Corresponding characteristic gaps (gn*),

where the frequencies and quality factors dropped by the amounts measured for g1*,

were then determined for the higher modes of vibration. As shown in Figure 6, the
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Figure 2 Amplitude and phase spectra of a microcantilever vibrating at different gaps g to a
surface. The amplitude (upper plot) and phase (lower plot) response of a microcantilever (250 μm × 35 μm ×
2 μm) vibrating in water at different distances from a surface are shown as a function of frequency and the
corresponding Reynolds number (Re). The flexural mode numbers are written above the resonance peaks.
Absolute (g) and normalized (H) cantilever-surface separations are indicated. The color scale is not linear; far from
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spectra are overlayed; the red curves (small g) are at the back.
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characteristic gap decreases for the eigenfrequencies and increases for the quality fac-

tors with increasing mode number. Similar behavior was observed for longer cantilevers

(see Additional file 1), however, the effect seems to diminish with increasing cantilever

length. To estimate the range of squeeze-film damping, i.e., the gap where the onset

of the effect occurs, the characteristic gap was multiplied by a factor of two. Because of

the definition, the range of squeeze-film damping for the fundamental mode is H = 1.

The ranges for modes 2 to 4 (mean ± SD) were 0.93 ± 0.18, 0.84 ± 0.21, and 0.74 ± 0.21

for the eigenfrequencies and 1.22 ± 0.35, 1.55 ± 0.37, and 1.67 ± 0.20 for the quality fac-

tors. The largest critical gap for the frequencies, i.e., where the surface has no influence

on the dynamics of the microcantilever, can be estimated from the fundamental mode,
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which is affected first. In contrast, the largest critical gap for the quality factors depends

on the highest mode measured.

To obtain a more general description of the results, the added mass coefficient, am,

and the damping coefficient, c, were calculated for each mode. While the added mass

coefficient am quantifies the co-moving fluid mass relative to the cantilever mass and is
ba
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a measure of the inertial loading, the damping coefficient c equals the energy dissipa-

tion per unit length acting on the cantilever. The required vacuum frequencies were

calculated using Equations 6 and 7 (see Methods) and the eigenfrequencies recorded in

the unbounded fluid, i.e., far from the surface (Table 1). The observed vacuum fre-

quency variations mainly originate from manufacturing-related uncertainties in the
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Table 1 Vacuum frequencies, added mass coefficients and damping coefficients measured
far from the surface (mean ± SD)

Mode n fn,vac/kHz am,H»1 cH»1/mPa · s

1 44.8 ± 5.4 9.17 ± 0.20 67.8 ± 1.6

2 277 ± 15 6.78 ± 0.03 116.2 ± 11.1

3 768 ± 34 5.75 ± 0.01 186.7 ± 4.43

4 1512 ± 52 5.05 ± 0.01 372.0 ± 26.9
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dimensions of the microcantilevers. Subsequently, the added mass coefficients could be

determined (see Methods, Equation 6). The values without the influence of squeeze-

film damping (H » 1) are provided in Table 1. Note that some authors defined the

added mass coefficient as the co-moving mass relative to the fluid mass displaced by

the static cantilever [3,16]. For direct comparison with their values, am has to be multi-

plied by ρc/ρf , i.e., ~2.3 in the present case. The damping coefficients c are the sum of

structural, cs, and viscous, cv, damping. For microcantilevers immersed in liquid, struc-

tural damping is orders of magnitude smaller than viscous damping (cs « cv), and can

thus be neglected [3]. The damping coefficients were calculated using the measured

quality factors and eigenfrequencies (Equation 8, see Methods). Table 1 shows the

damping coefficients without the influence of squeeze-film damping (H » 1). Even

though higher-modes dissipate less energy per oscillation cycle (higher quality

factors), they have larger damping coefficients due to their higher eigenfrequencies

(cycles/second). Figure 7 shows how the added mass and damping coefficients

increase due to squeeze-film damping. The magnitude of the observed shift in

added mass coefficients decreased with mode number, whereas the shift in damping

coefficients increased.
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Conclusions
We have measured the squeeze-film damping on higher flexural mode vibrations of

microcantilevers placed in proximity to a parallel surface in liquid. Due to the strong

damping only a direct excitation method, such as the employed photothermal excita-

tion [20], obtains spurious-free resonance spectra. A model consisting of a sum of

harmonic oscillators was employed to extract the modal eigenfrequencies and quality

factors from the phase spectra, and described the measured data well. Correct align-

ment of the data, i.e., calibration of the gap g, was crucial and limited the precision of

the measurements. As predicted [13,14], strong squeeze-film damping of the funda-

mental mode was observed for normalized gaps H < 1. With increasing mode number

the range of squeeze-film damping decreased for the eigenfrequencies (inertial forces)

and increased for the quality factors (dissipative forces). Furthermore, the effect seems

to depend on the length of the cantilever that determines the spatial wavelength of each

mode. These findings should be considered for the design of sensor containers and

cantilever tip geometries, because the quality factor is directly related to the sensitivity

of the sensor [5]. The observed behavior is likely due to the three-dimensional nature

of the flow field generated by higher modes, where gradients along the length of the

cantilever must not be neglected [14]. For theoretical models, this entails the introduc-

tion of another parameter, besides the normalized gap H and the Reynolds number Re,

related to the spatial wavelength of the cantilever, i.e., depending on the mode number

as well as the cantilever length (similar to the normalized mode number in [21]). Fi-

nally, added mass and damping coefficients were calculated to support the comparabil-

ity of the data. The shift in added mass decreased with mode number as predicted by

numerical models [2]. The opposite was observed for the damping coefficients, which

increased. More work is required to identify the underlying mechanisms governing

squeeze-film damping acting on higher modes. Nevertheless, our data from microcanti-

levers with common dimensions, allows the magnitude of the squeeze-film damping

effect to be assessed.
Methods
Experimental setup

Measurements were made as the upper surface of a small cavity containing water was

moved closer to the immersed microcantilever. A diagram of the experimental setup is

shown in Figure 8. Cantilever vibration was driven by photothermal excitation induced

by an intensity-modulated laser beam (405 nm), and detected by monitoring the deflec-

tion of a second laser beam (780 nm) using the optical setup described previously

[20,22]. A mirror galvanometer (GSV011, Thorlabs) was added to the setup to automat-

ically control the low-pass filtered position (fLP = 1 kHz) of the laser spot on the

position-sensitive detector (PSD) used to monitor cantilever vibration (measurement

bandwidth ~ 850 kHz). A Zurich Instruments HF2 lock-in amplifier was employed to

record cantilever resonance spectra by sweeping a given range of excitation frequencies

and demodulating the corresponding phase and amplitude (lock-in bandwidth = 4.38 Hz,

filter order = 24 dB/octave, 1000 data points). The setup was controlled using LabVIEW

(National Instruments) and measurements were automated using the openBEB macro

language [23]. The automation involved acquisition of spectra, adjusting the cantilever-
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surface gap, and adjusting the laser power and position of the laser spot on the position-

sensitive detector using a proportional-integral-derivative (PID) controller. The whole

setup was temperature controlled to 293 K within ± 0.2 K.

Tipless silicon microcantilevers (NSC12/tipless/noAl, MikroMasch) with nominal

dimensions of 250 μm × 35 μm × 2 μm and calculated spring constants of 0.76 N/m

were employed. The data reported in the Additional file 1 was obtained using longer

microcantilevers (300 μm × 35 μm × 2 μm and 350 μm × 35 μm × 2 μm) following the

same protocol. A comparison of the different cantilevers is provided in the Additional

file 1: Table S1. To improve reflectivity and avoid unspecific adsorption, 20 nm gold

was coated at the bottom side of the cantilevers and they were passivated with short

polyethylene glycol chains, as described previously [22].

The cavity containing the water was formed using PDMS (SYLGARD 184, Dow

Corning) and a glass microscope slide (AA00000112E, Menzel-Gläser), exploiting

surface tension forces (see Figure 8). The base was fabricated by reversibly bonding a

150 μm-thick PDMS sheet with a 10 mm wide circular hole at its center to the glass

slide. The 300 μm-thick cantilever chip was attached to the glass slide at the center of

the hole using UV curable glue (F-UVE-61, Newport). The thickness of the chip was

sufficient (H = 8.6) to exclude any influence of the glass surface on cantilever dynamics.

Furthermore, as the thickness of the PDMS sheet (150 μm) was less than the thickness

of the chip, access from above was retained. A flat upper cavity surface was fabricated

by pouring degassed PDMS onto a silicon wafer to a thickness of about 5 mm and bak-

ing for 4 hours at 60°C. The PDMS was subsequently removed from the wafer and cut

to give a circular disk with a diameter of 15 mm. The diameter exceeded all dimensions

of the microcantilevers by at least an order of magnitude to avoid edge effects. The

rougher surface of the disc was fixed to a kinematic mirror mount (KM05/M, Thorlabs),
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which was in turn mounted on an encoded piezo motor linear stage (CONEX-AG-LS25-

27P, Newport) with a nominal precision of 0.2 μm. The cavity allowed the cantilever to be

immersed in ~200 μL of water.

The flat upper PDMS surface was manually aligned parallel to the cantilever. To do

this, a piece of silicon wafer was attached to the surface by adhesion forces to render it

reflective. The read-out laser was then focused on the silicon surface and detected by

the PSD otherwise used to measure the cantilever deflection. The residual angular

misalignment was estimated to be less than 1 mrad (0.06°). The same procedure was

repeated after rotating the PSD by 90° to align the angle perpendicular to the longitu-

dinal axis of the cantilever.

To determine the coarse contact point, the surface was approached to the cantilever

until a large deviation in the deflection signal was observed. Next, the surface was

withdrawn to a distance where it had no influence on the cantilever vibration (g ≈
200 μm, H ≈ 6). To adjust the gap, the motorized linear stage was operated in a closed-

loop configuration. After recording a spectrum the position was stored and the surface

was moved closer to the cantilever. The step size was reduced as the gap decreased, to

account for the non-linearity of squeeze-film damping. Next, for a more precise gap

determination, the model of Tung et al. [14] was fitted to the frequency data of the

fundamental mode (see Figure 4a) with parameters f1,vac and a gap offset:

f 1
f 1;vac

¼ 1þ πρf b

4ρch
ℜ ΓTung Re; 2Hð Þ� �� �−1

2

ð2Þ

The offset was then subtracted from the z-position of the measurement to align the

data. We emphasize that the definition of H by Tung et al. [14] differs by a factor of

two from Equation (1).

Data analysis

All data analysis was performed using custom scripts in IGOR Pro (Wavemetrics, see

Additional file 1). Both amplitude and phase spectra contain the eigenfrequencies and

quality factors of the vibrational modes. However, at small cantilever-surface gaps the

resonance peaks in the amplitude spectrum become indistinguishable due to the strong

peak broadening, i.e., low quality factors (see Figure 2). Furthermore, large differences

in peak amplitude among higher modes of vibration complicate fitting and introduce

dependencies on the initial parameters. In contrast, the phase shifts of each mode

remain well resolved even at low quality factors. Thus, phase spectra were used to

extract the modal eigenfrequencies and quality factors (see Figure 3). To weight each

mode by the same amount on least squares fitting, the frequency spacing was

transformed from linear (p = 1), i.e., equally spaced, to a power law according to

f � mð Þ ¼ m
M−1

f pm¼M − f pm¼0

� �þ f pm¼0

� �1
p ð3Þ

where m is a data point in the spectrum ranging from 0 to M-1, M the total number of

points, fm=0 the lowest and fm=M the highest frequency in the measured data and p the

power of the transformation required for each mode of vibration to be assigned an

equal number of data points. The value of p was estimated to be 0.514 from the calcu-

lated widths of the resonance peaks of all employed cantilevers in an unbounded fluid
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[21]. The phase values corresponding to the transformed frequencies f* were linearly

interpolated from the measured data.

The following expression was used to extract the modal eigenfrequencies, fn, and

quality factors, Qn, from the phase spectrum using a Levenberg-Marquardt algorithm

(see Figure 3):

ϕ fð Þ ¼ ϕc f ; f 1; Q1;…; f N ; QNð Þ þ ϕth f ; τthð Þ þ ϕel f ; f el; coff
� �

¼
XN
n¼1

arctan Qn
f 2n−f

2

f nf

� �
−2πf τth þ arctan

f el
f

� �
þ coff ð4Þ

where the cantilever response ϕc is the sum of damped harmonic oscillators with fn and

Qn over all recorded modes N, ϕth is the linear thermal lag due to photothermal

excitation with time constant τth [24] and ϕel (center frequency fel and offset coff ) is an

empirical first-order filter that considers the phase responses of the measurement

electronics. The filter center frequency fel and the time constant τth were determined

on the first spectrum recorded far from the surface (H » 1) and then held constant.

The linearized equation of motion for a cantilever of length L, width b, thickness h

and mass density ρc is [16]:

EI
∂4Z x; tð Þ

∂x4
þ μc 1þ amð Þ ∂

2Z x; tð Þ
∂t2

þ c
∂Z x; tð Þ

∂t
¼ Fdrive x; tð Þ ð5Þ

where Z(x,t) is the z-direction flexural displacement at position x along the cantilever

beam at time point t, E and I = bh3/12 the Young’s modulus and area moment of inertia

of the cantilever, μc = ρcbh the mass per unit length of the cantilever, am the added mass

coefficient quantifying the co-moving fluid mass relative to the cantilever mass, c

the sum of structural and viscous damping per unit length, Fdrive an external driving
Table 2 Parameters for the employed silicon cantilevers immersed in water

Cantilever properties

L Length 250 μm

b Width 35 μm

h Thickness 2 μm

ρc Mass density 2330 kg · m−3

μc Mass per unit length 0.163 mg · m−1

E Young’s modulus 169 GPa

I Area moment of inertia 23.3 μm4

Qn Quality factor of mode n

fn Eigenfrequency of mode n Hz

fn,vac Vacuum frequency of mode n Hz

am Added mass coefficient

c Damping per unit length Pa · s

Fluid properties

ρf Mass density 998.25 kg · m−3

ηf Viscosity 1.005 mPa · s

Gap properties

g Gap m

H = g/b Normalized gap
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force per unit length. The parameters used for the following calculations are provided

in Table 2. The added mass coefficients am were calculated from the measured eigen-

frequencies fn [2]:

am ¼ f n;vac
f n

� �2

−1 ð6Þ

The vacuum frequencies fn,vac for each mode n were determined far from the surface
(H » 1), where the added mass coefficient can be calculated for higher modes, with

normalized mode number κ, according to the theory by Van Eysden and Sader [21]:

am ¼ πρf b

4ρch
ℜ ΓVanEysden Re; κð Þ� �

forH≫1 ð7Þ

The damping coefficients per unit length were calculated as [7,16]
c ¼ μc 1þ amð Þ 2πf n
Qn

ð8Þ

Additional file

Additional file 1: Information on the data analysis routine and additional data on longer microcantilevers
is provided (see Additional file 1).
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