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Abstract

Raman spectrometry is a powerful technique for the rapid identification of most
minerals and organic chemicals without sample preparation. In this context, the
European Space Agency (ESA) and NASA selected a Raman spectrometer in the
payload of the future ExoMars and Mars 2020 missions to identify organic compounds
and mineral products indicative of biological activity on Mars. Little is known, however,
about the effects of Mars atmospheric conditions on instrument performance and on
the Raman spectra. The objective of this study was to i) design and construct a versatile
simulation chamber to reproduce the atmospheric conditions expected inside a rover
on Mars, ii) to test the performance of a previously designed breadboard miniaturized
Raman laser spectrometer (RLS) inside the chamber. The Mars Atmosphere Simulation
Chamber (MASC) is a temperature and atmosphere controlled chamber. It includes an
innovative heating-cooling system to create homogeneous temperatures inside the
chamber that can be varied between 243 K and 283 K, while the charged coupled
device (CCD) of the Raman spectrometer can be independently cooled (e.g., 233 K). A
vacuum and gas control system permits evacuation of the chamber and the subsequent
introduction of any (dried) gas mixture at partial pressures between 1 mbar and several
bars. The minimum CCD temperature was found to depend on the surrounding MASC
temperature and atmosphere. A vertical shift of 3 pixels on the CCD was observed for
the Raman signals upon lowering the temperature from 283 to 253 K. We show that the
RLS instrument gives reliable Raman spectra over the tested range of temperatures and
from a vacuum of 4 x 10−5 mbar to a CO2 atmosphere at pressure relevant to Mars
(8 mbar). For example, the Raman spectra of three test minerals, calcite, aragonite and
baryte, showed identifiable Raman peaks with Raman shift values within ± 1 cm−1 of
those reported in previous works under terrestrial conditions. This confirms that a RLS
instrument is useful for the identification of minerals during future missions to Mars; once
a necessary detector recalibration was carried out, the system performed well under
8 mbar pressure and 243 – 283 K. The MASC was found to be a versatile instrument; it
can provide important information on instrument performance under Martian conditions
and other temperatures and atmospheric conditions can also be simulated.
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Introduction
Fundamental questions remain about the geological history of the planet Mars [1–3]. One

key question is whether free water has been persistent on the Mars surface to support life.

The presence of unaltered recent volcanic rocks and minerals (e.g., olivine) suggests that

the surface is currently dry [4, 5]. Previous studies, however, have shown that the planet ex-

perienced major climate changes and that the earlier conditions were warmer and wetter

[6]. For example, the weathering and erosion products are evidence of the presence of water

in the early geological history of Mars, during the Noachian era [5–7]. The geographic

extent of minerals such as hydrated, evaporite or sedimentary minerals (e.g., hydrated

sulphates, carbonates, phyllosilicates) is still being determined and how long this wet period

lasted is still matter of debate [6–8]. Therefore, planetary scientists are interested in the

accurate in situ determination of the surface mineralogy and mineral composition on Mars

by advanced techniques and instruments on board Mars landers and rovers [9–14]. The

instruments are usually miniaturized versions of those routinely used on Earth. Little is

known, however, about the effects of different atmospheric conditions on the performance

of such instruments and on the response of the minerals to be analysed.

Kolesov and Geiger reported that the temperature may affect the structure of minerals

and the Raman peak shape and intensity [15]. In the case of techniques that use plasmas,

such as Laser-induced breakdown spectroscopy (LIBS), the characteristics of the plasma

and its expansion depends on the ambient pressure [16] and thermal distortions of the

components of the instrument itself can affect its calibration or performance. Thus it is

essential to simulate conditions similar to those expected during the space missions, in

order to predict and take into account the accuracy and precision of instrumental data, or

if necessary adapt the design.

Worldwide there are several atmospheric simulation chambers that are capable of

reproducing Martian conditions to some extent [17–19]. In the context of testing instru-

ment, however, many are too small and do not allow housing an instrument and samples

simultaneously. The instrument and the samples to be analysed are usually separated

physically by viewports/windows and the experiments are not performed under fully

realistic conditions. Therefore, we designed and built a versatile Mars Atmosphere

Simulation Chamber (MASC) with a large volume to house both the instruments and

the samples, and to simulate the conditions inside a rover during the next space

missions to Mars.

In this paper, we first describe the design of the new MASC chamber and the protocol for

experiments under the conditions expected inside the rover during the ExoMars mission.

Finally, we test a prototype Raman Laser Spectrometer (RLS) instrument previously

designed for the ExoMars mission by the Dutch Organization for Applied Research (TNO)

on a set of three test minerals.

Design requirements and technical description of the Mars Atmosphere
Simulation Chamber (MASC) and Raman Laser Spectrometer (RLS)
The MASC is a cylindrical stainless steel chamber, volume 0.261 m3 (100 cm length and a

diameter of 57.6 cm), with doors at each end to ensure a high versatility. Previous work

related to ExoMars Raman studies by Sobron and Wang [20] estimated that the rover

operation temperature range would be between 243 K and 283 K during Raman

measurements and we await final operating conditions to be released by ESA. The major
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requirement in the design of the chamber was to provide stable temperatures and pressures

(6–10 mbar of pure CO2 atmosphere and a temperature range between 243 K and 283 K)

that could be varied in line with experimental requirements. In addition, rapid changes in

temperature would subject the optics of space instruments to thermal stresses. Therefore, it

was required to control the rate of heating or cooling of different parts of the MASC. To

fully assess the effect of low pressure on the instrument performance, it was desirable to de-

sign a chamber with the flexibility to produce stable pressures from a vacuum (~4 × 10
−5 mbar) to a pressure of a 6–10 mbar of CO2 as expected on Mars. Moreover, the water

content inside the MASC had to be kept low, for example on Mars the water content is ~

0.03 % [21].

The chamber contains a variety of electrical/optical feed-throughs, viewports and vacuum

measurement gauges, as well as other instruments. A sample holder was fitted with 3D

stages so that different samples could be analysed without the need for opening the

chamber in between sample analyses. As the majority of planetary instruments will include

CCDs as detectors (e.g., for ExoMars Cameras, X-ray Diffraction (XRD), X-ray fluorescence

(XRF) and Raman laser spectrometer (RLS instrument), the MASC was fitted with a

separate cooling circuit for the CCD of the space instrument.

The main doors provide support for mounting plates. For example, in the context of

testing the RLS instrument (see below) one mounting plate supports the RLS spectrometer

and another carries the optical head and sample holder with a 3D stage, see Fig. 1.

Temperature control

The MASC was insulated from the ambient laboratory conditions by a double wall,

with an interstitial space of 60 mm. This enabled us to reach a 10−6 mbar vacuum over

the full length of the chamber, after several cycles of pumping and outgassing at 393 K.

Fig. 1 Sketch of the Mars atmosphere simulation chamber (MASC) a Lauda cooling machine, b heat
exchanger type HE, c pump used to circulate Freon, d the two main doors with small flanges for
electrical-thermal, optical feed-throughs, e mounting plates, f cooling screen, g RLS spectrometer,
h optical head. There are several temperature sensors: sensor (1) is on the cooling plate, sensor (2)
is on the sample tray and sensor (3) is on the left main door
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In addition, the outer wall and the two main doors of the MASC were covered with a

flexible 20 mm thick insulation layer of Thermoplastic elastomeric foam (TPE).

To cool/heat the main doors, a Lauda XT-150 cooling machine, with silicone oil as

the cooling medium, was used. The main doors were produced from a single piece of

steel such that the silicone oil cannot leak inside the chamber and contaminate the

instruments. The Lauda was considered a simple, safe and reliable machine with an

accuracy of ± 0.05 K. The power outputs of the Lauda at 293 and 233 K were 1.50 and

0.06 kW respectively, which was sufficient for the heating/cooling of the MASC when

operated between 243 and 283 K.

The inside of the chamber, i.e. the cooling screen and mounting plates, upon which

experiments were performed or instruments tested, needs to be temperature controlled.

Due to their design structure and position inside the MASC there would be a risk that

these parts could leak and contaminate the chamber interior. Therefore, we used a

non-corrosive cooling medium in a secondary closed system in thermal contact

through heat exchanges with the primary silicone cooling circuit. Freon (C2Cl3F3) was

selected as a safe cooling medium (nontoxic and non-flammable) and was passed

through cooling pipes in the mounting plates and the cooling screen in a liquid state

(at ~ 6 bars at room temperature).

The cooling screen was made of two stainless steel plates that were partially welded

together in such a way that it formed inter-connected channels. In order to produce a

pillow shape, the welded plates were pressurised to ~ 60 bars. This caused the plates to

inflate like a pillow. As shown in Fig. 2, there are six welds (concentric circles) in the

design of the cooling plate to create the cylindrical tube. The two mounting plates were

cooled via cooling pipes located below the plates. To ensure flexibility in temperature

control within the chamber, three secondary circuits where manufactured, each with a

dedicated pump and heat exchanger. Pumps were designed (Micro Pump Company)

for Freon use in the temperature ranges from 227 to 450 K. Two pumps with flow

capacities of 380 ml/min circulated Freon from the heat exchangers to the mounting

plates. As the cooling screen had the largest volume and was mounted higher than

mounting plates, a pump with a higher capacity (930 ml/min) was needed to pump

Freon to the cooling screen. Heat was transferred from the silicone oil to the Freon by

a counter flow principle, via a heat-exchanger (type HE 0.5 from Danffos, 178 mm

length and weighs 0.3 kg). The cooling capacity of the HE 0.5 type was ~ 0.33 and

4 kW at 233 and 293 K respectively [22].

The cooling system was filled to 90 % of the volume to allow expansion of the

Freon whenever the temperature was raised. Currently the temperature inside the

chamber can be varied between 243 and 283 K, but the stainless steel structure of

the chamber allows the temperature to be varied over a larger range of tempera-

tures if required.

Protection of the electrical/ optical feed-through on the doors

Initial cooling experiments with the MASC produced condensation on the surface of the

small flanges/feed-throughs of each door at a temperature near or below 290 K. This

potentially could lead to problems for electronic and optical components. Therefore,

flanges/feed-throughs were maintained above 293 K by the use of power resistors. These

have a low resistance (1–2 Ohms) and can handle up to 30 Watts. A Call9300 (CAL
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Fig. 2 Design and dimensions (mm) of the cooling plate; Freon enters from the red entrance and is
passed along the green path inside the cooling plate. The circles indicate the connection of cooling plates
but allow Freon to flow between the welds (area in green). There are six welds (concentric circles) plus one
large oval weld in the cooling plate that connects the plates and prevents Freon circulation which is shown
in the white area
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Controls, UK) temperature controller was used to set the temperature. Therefore, each

door could be set to a desired temperature (see Fig. 3).

Atmosphere control inside the MASC

Simulated Martian conditions were achieved by using an atmosphere gas control

system. For simplicity, initial testing was conducted with 100 % CO2, which represents

a reliable proxy for the Martian atmosphere. The chamber, however, has the flexibility

to simulate different gas compositions and pressures. Also, by using copper O-rings

and a larger turbo molecular pump, it will be possible to obtain a lower vacuum for

testing instrument under lunar conditions.

Martian pressure conditions were simulated inside the MASC by first evacuating the

chamber and then flushing with CO2. To maintain stable Martian conditions, the MASC

needs to be leak tight. EPDM O-rings (ethylene-propylene-diene rubber, hydrogen peroxide

cured) were chosen for the large entrance doors because of their resistance to low

temperature (down to 233 K) in combination with their compatibility to clean applications

in the pharmaceutical/food industry.

The fact that the Martian atmosphere only contains ~ 0.03 % water also had to be con-

sidered. The large surface area of the chamber’s wall, main doors and multiple electrical/

optical feed-throughs could lead to extensive outgassing. The vacuum system comprises

an oil free dry-compression diaphragm pump (Pfeiffer PKT01300) that was powered by a

turbo molecular pump (Pieffer TMH 071P) to reach an initial vacuum of ~ 10−5 mbar.

Even when the chamber contained a spectrometer, an optical head, samples and all optical

fibres and electrical cables, the pump down time was rapid and H2O was quickly and

effectively removed from the system without the need for an additional cold finger (the

pressure dropped below 4 × 10−5 mbar in 2 hours). In addition, a parallel arrangement of

Fig. 3 View of one of the MASC doors with a) local heater and b) a flange fitted with optical or
electrical feed-throughs
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Nafion tubes cleans the CO2 gas of water. This method of water removal uses a dry

helium flow around the permeable Nafion tube to flush the water across the membrane

wall [23]. A particle filter of 0.5 mm mesh was mounted on the CO2 feeding line to

prevent deposition of solid particles in the tank.

Cooling the CCD of the RLS

An additional cooling system was implemented to minimize thermal noise/ dark noise of

the CCD in the RLS instrument. In our cooling design of the CCD, a Peltier cooler was

mounted on the CCD and connected via a braided copper thermal strap (~25 mm wide

and 5 mm thick) to a copper cooling block. Inside the MASC, this copper cooling block

was mounted to a small flange in the chamber door. From the outside of the MASC, the

copper cooling block was connected to an Etscheid water cooler with the cooling capacity

of 750 kcal/h at 288 K. This cooler was located directly under the chamber to avoid

unnecessary heat exchange.

Design of a sample holder with 3D linear stages

Efficient use of the chamber required that multiple samples could be analysed sequentially.

Three linear positioning stages (manufactured by the Physik Instrumente Company,

Germany) were combined to form a 3D linear stage. These three linear positioning stages

can carry up to 20 kg, push/pull up to 50 N and have an accuracy of about ± 0.1 mm. A

sample holder was mechanically connected to the upper linear stage. The sample tray was

83 mm in length and 35 mm wide and could hold ten samples. Samples were solid pieces

of mineral mounted in epoxy (cylinders with diameters of 10 mm) and 3 mm apart to allow

potential use of laser ablation techniques.

Design of the CCD detector

The RLS instrument used for this study was an elegant breadboard for the ExoMars

mission, originally designed as a combined Raman and Laser Induced Breakdown

Spectroscopy (LIBS) instrument [24]. In order to decrease the weight and power usage of

the payload aboard the ExoMars mission, the LIBS capability had in the meantime been

removed from the flight mode instrument. Therefore, the effect of Mars atmospheric con-

ditions on the LIBS performance of the instrument is not discussed in this article. The

Raman modality uses a 659 nm laser with a maximum output of 20 mW. The RLS focal

plane assembly incorporates a charge coupled device (CCD), a thermal/mechanical inter-

face (cold finger) and proximity electronics. The proximity electronics include CCD bias

voltage filters and a pre-amplifier circuit for amplifying the analogue video output signal

produced by the on-chip amplifier. The thermal design of the spectrometer allows the

CCD to be operated between −40 °C and room temperature, with the CCD thermally

isolated from the rest of the spectrometer including the proximity electronics. The

spectrometer was designed to project multiple grating orders at different heights of the

CCD. This way the instrument could be used over a broad wavelength range (for LIBS)

and still offer a high spectral resolution (for Raman and LIBS). The CCD was a back-

illuminated e2v Technologies CCD42-40 with an imaging area comprising 2048 × 2048,

13.5 μm pixels. The device is Ultraviolet (UV)-enhanced, with a quantum efficiency of at

least 50 % between 240 and 840 nm and imaging pixels with a full-well capacity in excess
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of 105 electrons. The device is a full-frame CCD but is usually operated in pseudo frame

transfer mode in order to reduce smearing effects at short integration times (which can

result in cross contamination of the spectral orders). The CCD is bonded to a ceramic

Dual-In-Line (DIL) package but is flight representative with respect to its functional and

thermal performance (including the mechanical interface to the rest of the spectrometer).

The analogue video output from the focal plane assembly is digitised using a correlated

double-sampling circuit and low-noise analogue-to-digital converter. A programmable

digital signal processor (DSP) enables flexible detector operating modes, including

synchronised CCD readout and laser emission.

Results
Temperature control inside the MASC

A representative low temperature experiment under Martian conditions inside MASC

consists of five stages: (1) loading the sample tray, (2) evacuating the MASC to remove

all water (4 × 10−5 mbar), (3) pumping 8 mbar of CO2 into the MASC, (4) setting the

Lauda cooling machine to a specific temperature (5) recording the temperature data.

Dallas 1-wire temperature sensors (type DS18B20) were used to monitor the

temperature behaviour as a function of time within the chamber. A total of twenty two

sensors are used to measure the ambient CO2 temperature inside the chamber. A small

electronic interface that connects the sensors to a computer, allows monitoring the

temperature throughout the chamber. The temperature sensors were mounted to the

MASC components using vacuum compatible glue. Sensor (1) on the left cooling plate,

sensor (2) on the sample tray and sensor (3) on the left main chamber door are also

shown in Fig. 1. Sensor 4 was glued on the middle of the cooling screen. An example

of temperature change with time on the left cooling plate and the left side of the

chamber wall is present in Fig. 4 and shows that temperatures were stable after

15 hours.

The sensors on the left cooling plate front and the middle of the chamber were directly

cooled by the Freon passing through the cooling pipe and cooling screen. Consequently,

these sensors recorded the lowest temperature of ~ 244 and 248 K respectively. In contrast,

due to the open structure of the 3D linear stages, there was relatively poor thermal conduct-

ivity between the cooling plate and the sample tray. Thermal straps were included in the

design but better thermal conduction is needed to reduce the sample tray below ~ 250 K.

The temperature on the left door only reached ~ 285 K, because local heaters maintain the

electrical feed-throughs at 293 K. Therefore an aluminium cover was designed to insulate

the inside of the MASC from thermal radiation of the doors.

Cooling of the CCD

Experiments were performed to assess the cooling system capabilities of the CCD detector

inside the MASC. MASC was operated under a vacuum of 4 × 10−5 mbar or with 8 mbar

of CO2 , at temperatures of 281, 265 and 238 K. The minimum CCD temperatures

achieved under vacuum were 241, 237 and 232 K respectively. In contrast, in the presence

of CO2, the minimum CCD temperatures were higher: 256, 248 and 239 K. The

temperature response of the CCD over time is presented in Fig. 5. Irrespective of the

MASC operating temperature, the CCD always reached a temperature below 243 K under
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vacuum conditions. In a CO2 atmosphere, when the MASC operational temperature was

at 281 and 265 K, the CCD reached temperatures of 256 and 248 K respectively. At a

MASC temperature of 238 K the Peltier system did not provide additional cooling. These

data indicate that further work is required to improve the cooling design of the CCD,

particularly in the presence of an atmosphere. Redesign is underway to improve thermal

contact between interfaces and greater insulation of the Cu block and braided strap.

Calibration testing of the CCD

Data acquisition used a single 40 s integration. With the 659 nm laser, the most relevant

Raman scattering modes can be detected on the 3rd diffraction order between 660 and
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840 nm. The spectral resolution was ~ 0.2 nm (~4 cm−1), i.e. doublet peaks separated by less

than 4 cm−1 cannot be fully resolved. In an independent set of experiments, the same reso-

lution of the spectrometer was determined under ambient conditions based on the peak

width measured for the sharp line of a mercury calibration lamp: 0.2 nm FWHM [24–26].

The accuracy of Raman shift values, however, was ~ 0.4 cm−1. For Mars missions this accur-

acy would be sufficient to distinguish between minerals such as calcite and aragonite

(a polymorph of calcite, both having the chemical composition CaCO3 but with a different

molecular structure). These two minerals have lattice vibration modes (collective vibrations

within the crystals) at ~ 283 and 274.5 cm−1 respectively, see below.

The calibration of the CCD was tested as a function of the MASC temperature, focussing

on the 3rd order where the Raman peaks are located. First, to localise the position of the

3rd order line on the camera, the CCD was illuminated with natural white light; then to

precisely calibrate the CCD, the camera was illuminated with neon and argon lamps that

produce narrow, intense peaks with known wavelengths between 660 and 840 nm. The

calibration results demonstrate that the vertical position of the 3rd diffraction order on the

CCD was influenced by temperature and shifted by 3 pixels toward the top of the camera

(Y direction) when we decreased the temperature from 283 K to 253 K (see Fig. 6). In

contrast, there was no significant shift in the X direction (less than a pixel). Indeed, we

performed a calibration of the wavelength as a function of the pixel column number (X

direction) using Ar and Ne lamps at 283 K, then we decreased the temperature of the

MASC to 253 K and illuminated again the CCD with Ar and Ne lamps: when using the

calibration performed at 283 K for this lower temperature, the measured wavelengths are

shifted less than 0.07 nm compared to the real wavelength values. This difference is within

our Raman resolution capabilities and thus was not taken into account for our mineral

analyses, but suggests that if the CCD is operated at even lower temperatures a specific

calibration check might be required. As such, the instrument is useful to detect minerals

under Martian conditions but further work is needed to improve the RLS spectrometer

design to minimize offset of the spectrum in the Y direction. More analysis is required to

see if thermal expansion of optical components or the mounting assembly caused the

vertical offset. Currently, different readout protocols are required to optimize the light

collection at a specific temperature.

Fig. 6 Temperature-induced shift of the observed white light emission in 3rd order on the CCD at 283, 278
and 253 K. The X axis shows the column number of CCD pixels; the Y axis shows the row number of a part
of the CCD pixels, vertically expanded for clarity. The pixel size is 13.5 μm square

Motamedi et al. EPJ Techniques and Instrumentation  (2015) 2:15 Page 10 of 15



Raman spectroscopy

To assess the capability of the RLS instrument under Martian environmental condi-

tions, we studied the Raman spectra of calcite, aragonite and baryte inside the MASC

at different temperatures and pressures. The choice of those three minerals relates to

ExoMars’ priority objective of searching for signs of water in the shallow subsurface.

Indeed, calcite can form in sedimentary, igneous and metamorphic rocks. Aragonite is

formed by biological and physical processes, including precipitation from marine and

freshwater environments [27] and baryte can also be an indicator of hydrothermal

circulation [28, 29].

Raman spectra of selected minerals were processed using the Origin program and

Lorentzian peak fitting was used to provide a more accurate estimation of the height,

position and width of the Raman peaks of the selected minerals for this study. To

estimate the repeatability of this fitting routine, we acquired the Raman spectrum of a

calcite sample ten times and then fitted the 1087 cm−1 peak for the ten individual

spectra. The measurements show that this routine can fit the data and find that the

value of a Raman peak shift varies within a standard deviation of 0.5 cm−1, which in

the wavelength range in question corresponds to ~ 0.02 nm.

The spectra of selected minerals are shown in Figs. 7, 8, 9. This study focuses on

instrument capabilities by examining minerals under Mars simulation conditions. Such

a study is important to further understand how the instrument’s performance will

change at the low temperatures pertinent to Mars and also if the structure of minerals

varies with atmospheric conditions, for example possible changes in the length of

atomic bonds [30–33].

In Fig. 7b, the RLS Raman spectrum of calcite (obtained under vacuum condition at

283 K) is characterized by the most intense ν1 symmetric stretching of the CO3 group

at 1087.5 cm−1, the ν4 symmetric bending mode at 713.4 cm−1, and one lattice vibration

mode at 282.9 cm−1. These peaks are within ~ 1 cm−1 of the data reported in previous

literature studies [34]. The possible 2ν2 and ν3 peaks were not detected with the RLS

instrument. These weak peaks appear to have been obscured within the background

noise. The Raman spectra of calcite under vacuum condition at 253 K (see Fig. 7a) or

at 8 mbar CO2 (see Fig. 7c) has peaks with Raman shift within ~ 0.5 cm−1 of those

obtained under vacuum condition at 283 K, a scatter which is comparable to the stand-

ard error obtained for repeated measurements without changing the temperature and

pressure conditions.

Similarly, Figs. 8, 9 also demonstrate that peak positions resolved in the Raman spec-

tra of aragonite and baryte obtained under Martian conditions were within ~ 0.5 cm−1

of those obtained under vacuum condition at 283 K. These results again strongly sug-

gests that there were no significant differences in the Raman spectra related to Martian

conditions (low temperature or CO2 atmosphere). The aragonite spectrum shows: the

very strong ν1 Raman peak at ~1086 cm−1, the ν4 vibration mode at ~704 cm−1

and a weak lattice vibration modes at 212 cm−1 [35]. In the baryte spectrum, the

most intense peak, the ν1 symmetric stretching vibration mode of SO4 tetrahedra,

occurs at ~ 989 cm−1. The peak at 461 cm−1 is attributed to the ν2 bending vibration

mode. The ν3 asymmetric stretching vibration and ν4 asymmetric bending vibration

modes are observed at ~ 1144 cm−1 and 619 cm−1 [36]. Also for these two minerals the

spectra fully agree with reference spectra from the literature.
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Conclusion
The recently developed MASC at VU University in Amsterdam reached most of its ini-

tial design goals as it is able to simulate Martian environmental conditions. The de-

signed operational temperature range inside the MASC was 283 to 243 K and the

pressure range was 8 to 10−5 mbar. The unique design of the MASC, having a large

volume (0.261 m3) and a separate cooling circuit with a stable low temperature, allowed

detailed in situ characterisation of the RLS instrument and samples under Martian con-

ditions. The MASC is not restricted to simulate Martian conditions but can also be

used for a whole range of other experiments where a controlled atmospheric compos-

ition and temperature is required.

Fig. 7 RLS Raman spectra of calcite in the range 200 – 1200 cm−1, obtained under different conditions.
Peaks in the Raman spectra under vacuum condition at 253 K and also those obtained under 8 mbar CO2,
are within ~ 0.5 cm−1 of the spectra acquired under vacuum condition at 283 K
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The tested RLS spectrograph showed a vertical offset of about 3 pixels when lowering

the temperature from 283 to 253 K. This was corrected for by adapting the read-out

protocols, and this problem is not likely to occur in a more conventional Raman spec-

trometer in first order. Nevertheless, for any instrument to be employed in space it is

crucial to check the repeatability and calibration under the expected environmental

conditions. No significant horizontal shift on the CCD was observed when lowering the

temperature.

The data indicated the accurate performance and calibration of the RLS instrument.

Raman spectra obtained under Martian conditions (8 mbar CO2 pressure and 253 K)

were indistinguishable from those obtained under vacuum conditions at a temperature

of 253 K and also indistinguishable from those measured at 283 K. There was also no

significant difference in peak positions of the Raman spectra of calcite, aragonite and

baryte under Martian conditions in comparison with literature reference spectra re-

corded under Earth conditions.

Fig. 9 RLS Raman spectra of baryte in the range 200 – 1200 cm−1, obtained under different conditions

Fig. 8 RLS Raman spectra of aragonite in the range 200 – 1200 cm−1, obtained under different conditions
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