Blakely WF, Salter CA, Prasanna PG: Early-response biological dosimetry–recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism.
Health Phys 2005, 89:494–504.
Article
Google Scholar
Rana S, Kumar R, Sultana S, Sharma RK: Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses.
J Pharm Bioallied Sci 2010, 2:189–196.
Article
Google Scholar
Blakely WF, Ossetrova NI, Whitnall MH, Sandgren DJ, Krivokrysenko VI, Shakhov A, Feinstein E: Multiple parameter radiation injury assessment using a nonhuman primate radiation model-biodosimetry applications.
Health Phys 2010, 98:153–159.
Article
Google Scholar
DiCarlo AL, Jackson IL, Shah JR, Czarniecki CW, Maidment BW, Williams JP: Development and licensure of medical countermeasures to treat lung damage resulting from a radiological or nuclear incident.
Radiat Res 2012, 177:717–721.
Article
Google Scholar
Garty G, Chen Y, Turner HC, Zhang J, Lyulko OV, Bertucci A, Xu Y, Wang H, Simaan N, Randers-Pehrson G, Lawrence Yao Y, Brenner DJ: The RABiT: a rapid automated biodosimetry tool for radiological triage. II. Technological developments.
Int J Radiat Biol 2011, 87:776–790.
Article
Google Scholar
Pinto MM, Santos NF, Amaral A: Current status of biodosimetry based on standard cytogenetic methods.
Radiat Environ Biophys 2010, 49:567–581.
Article
Google Scholar
Romm H, Wilkins RC, Coleman CN, Lillis-Hearne PK, Pellmar TC, Livingston GK, Awa AA, Jenkins MS, Yoshida MA, Oestreicher U, Prasanna PG: Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties.
Radiat Res 2011, 175:397–404.
Article
Google Scholar
Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM: The use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human primates.
PLoS One 2010, 5:e15544.
Article
ADS
Google Scholar
Redon CE, Nakamura AJ, Martin OA, Parekh PR, Weyemi US, Bonner WM: Recent developments in the use of γ -H2AX as a quantitative DNA double-strand break biomarker.
Aging 2011, 3:168–174.
Article
Google Scholar
Amundson SA, Do KT, Shahab S, Bittner M, Meltzer P, Trent J, Fornace AJ Jr: Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation.
Radiat Res 2000, 154:342–346.
Article
Google Scholar
Amundson SA, Bittner M, Meltzer P, Trent J, Fornace AJ Jr: Induction of gene expression as a monitor of exposure to ionizing radiation.
Radiat Res 2011, 156:657–661.
Article
Google Scholar
Amundson SA, Grace MB, McLeland CB, Epperly MW, Yeager A, Zhan Q, Greenberger JS, Fornace AJ Jr: Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients.
Cancer Res 2004, 64:6368–6371.
Article
Google Scholar
Dressman HK, Muramoto GG, Chao NJ, Meadows S, Marshall D, Ginsburg GS, Nevins JR, Chute JP: Gene expression signatures that predict radiation exposure in mice and humans.
PLoS Med 2007, 4:e106.
Article
Google Scholar
Brengues M, Paap B, Bittner M, Amundson S, Seligmann B, Korn R, Lenigk R, Zenhausern F: Biodosimetry on small blood volume using gene expression assay.
Health Phys 2010, 98:179–185.
Article
Google Scholar
Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, Ashworth A, Bouffler S, Badie C: Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response.
Int J Radiat Biol 2011, 87:115–129.
Article
Google Scholar
Sunirmal P, Barker CA, Turner HC, McLane A, Wolden SL, Amundson SA: Prediction of
In Vivo
radiation dose status in radiotherapy patients using
Ex Vivo
and
In Vivo
gene expression signatures.
Radiat Res 2011, 175:257–265.
Article
Google Scholar
Paul S, Amundson SA: Development of gene expression signatures for practical radiation biodosimetry.
Int J Radiat Oncol Biol Phys 2008, 71:1236–1244.
Article
Google Scholar
Riecke A, Rufa CG, Cordes M, Hartmann J, Meineke V, Abend M: Gene expression comparisons performed for biodosimetry purposes on in vitro peripheral blood cellular subsets and irradiated individuals.
Radiat Res 2012, 178:234–243.
Article
Google Scholar
Williams JP, Brown SL, Georges GE, Hauer-Jensen M, Hill RP, Huser AK, Kirsch DG, Macvittie TJ, Mason KA, Medhora MM, Moulder JE, Okunieff P, Otterson MF, Robbins ME, Smathers JB, McBride WH: Animal models for medical countermeasures to radiation exposure.
Radiat Res 2010, 173:557–578.
Article
Google Scholar
Ballas LK, Elkin E, Schrag D, Minsky B: Radiation therapy facilities in the United States.
Int J of Radiat Oncol Biol Phys 2006, 66:1204–1211.
Article
Google Scholar
Committee on Radiation Source Use and Replacement, National Research Council. “7 RADIOTHERAPY”: Radiation source use and replacement. 2008, 7:117–134.
Google Scholar
Pinnarò P, Soriani A, D’Alessio D, Giordano C, Foddai ML, Pinzi V, Strigari L: Implementation of a new cost efficacy method for blood irradiation using a non dedicated device.
J Exp Clin Cancer Res 2011, 30:7.
Article
Google Scholar
Weiss B, Hoffmann M, Anders C, Hellstern P, Schmitz N, Uppenkamp M: Gamma-irradiation of blood products following autologous stem cell transplantation: surveillance of the policy of 35 centers.
Ann Hematol 2004, 83:44–49.
Article
Google Scholar
Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DW: AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams.
Med Phys 1999, 26:1847–1870.
Article
Google Scholar
Abe H, Kool ET: Destabilizing universal linkers for signal amplification in self-ligating probes for RNA.
J Am Chem Soc 2004, 126:13980–13986.
Article
Google Scholar