Woodhouse J: **Linear damping models for structural vibration.**
*J Sound Vib* 1998, **215:**547–569.

Article
ADS
MATH
Google Scholar

Sidles JA, Garbini JL, Bruland KJ, Rugar D, Züger O, Hoen S, Yannoni CS: **Magnetic resonance force microscopy.**
*Rev Modern Phys* 1995, **67:**249–265.

Article
ADS
Google Scholar

Strutt JW: *Theory of Sound*. New York: Dover; 1945.

MATH
Google Scholar

Zener CM: *Elasticity and Anelasticity of Metals*. Chicago: University of Chicago Press; 1948.

Google Scholar

Nowick AS, Berry BS: *Anelastic Relaxation in Crystalline Solids*. New York: Academic Press; 1972.

Google Scholar

Braginsky VB, Mitrofanov VP, Panov VI: *Systems with Small Dissipation*. Chicago: Chicago University Press; 1985.

Google Scholar

Nashif AD, Jones DIG, Henderson JP: *Vibration Damping*. New York: Wiley; 1985.

Google Scholar

Graesser J, Wong CR: **The relationship between traditional damping measures for materials with high damping capacity: a review.** In *M3D: Mechanics and Mechanisms of Material Damping*. Edited by: Kinra VK, Wolfenden A. Philadelphia: American Society for Testing and Materials; 1992:316–343.

Google Scholar

Lakes R: *Viscoelastic Materials*. Cambridge: Cambridge University Press; 2009.

Book
Google Scholar

Saulson PR: **Thermal noise in mechanical experiments.**
*Phys Rev D* 1990, **42:**2437–2445.

Article
ADS
Google Scholar

Sader JE, Hughes BD, Sanelli JA, Bieske EJ: **Effect of multiplicative noise on least-squares parameter estimation with applications to the atomic force microscope.**
*Rev Sci Instrum* 2012, **83:**055106.

Article
ADS
Google Scholar

Kuter-Arnebeck O, Labuda A, Joshi S, Das K, Vengallatore S: **Estimating damping in microresonators by measuring thermomechanical noise using laser Doppler vibrometry.**
*J Microelectromech Syst* 2014. in press

Google Scholar

Nathonson HC, Newell WE, Wickstrom RA, Davis JR: **The resonant gate transistor.**
*IEEE Trans Elec Dev* 1967, **ED-14:**117–133.

Article
Google Scholar

Newell WE: **Miniaturization of tuning forks.**
*Science* 1968, **161:**1320–1326.

Article
ADS
Google Scholar

Binnig G, Quate CF, Gerber C: **Atomic force microscope.**
*Phys Rev Lett* 1986, **56:**930–933.

Article
ADS
Google Scholar

Senturia SD: *Microsystem Design*. Boston: Kluwer; 2001.

Google Scholar

Harry G, Bodiya TP, DeSalvo R: *Optical Coatings and Thermal Noise in Precision Measurement*. Cambridge: Cambridge University Press; 2012.

Google Scholar

Gabrielson TB: **Mechanical-thermal noise in micromachined acoustic and vibration sensors.**
*IEEE Trans Elec Dev* 1993, **40:**903–909.

Article
ADS
Google Scholar

Labuda A, Bates JR, Grütter PH: **The noise of coated cantilevers.**
*Nanotechnology* 2012, **23:**025503.

Article
ADS
Google Scholar

Jimbo Y, Itao K: **Energy loss of a cantilever vibrator.**
*J Horological Institute of Japan* 1968, **47:**1–15.

Google Scholar

Hao Z, Erbil A, Ayazi F: **An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations.**
*Sens Actuators A* 2003, **109:**156–164.

Article
Google Scholar

Photiadis DM, Judge JA: **Attachment losses of high Q oscillators.**
*Appl Phys Lett* 2004, **85:**482–484.

Article
ADS
Google Scholar

Park YH, Park KC: **High-fidelity modeling of MEMS resonators–Part I: Anchor loss mechanisms through substrate.**
*J Microelectromech Syst* 2004, **13:**238–247.

Article
Google Scholar

Wilson-Rae I, Barton RA, Verbridge SS, Southworth DR, Ilic B, Craighead HG, Parpia JM: **High-Q nanomechanics via destructive interference of elastic waves.**
*Phys Rev Lett* 2011, **106:**047205.

Article
ADS
Google Scholar

Bindel DS, Govindjee S: **Elastic PMLs for resonator anchor loss simulation.**
*Int J Numer Meth Eng* 2005, **64:**789–818.

Article
MATH
Google Scholar

Wang K, Wong AC, Nguyen CTC: **VHF free-free beam high-Q micromechanical resonators.**
*J Microelectromech Syst* 2000, **9:**347–360.

Article
Google Scholar

Ferguson AT, Li L, Nagaraj VT, Balachandran B, Piekarski B, DeVoe DL: **Modeling and design of composite free-free beam piezoelectric resonators.**
*Sens Actuators A* 2005, **118:**63–69.

Article
Google Scholar

Anetsberger G, Rivière R, Schliesser A, Arcizet O, Kippenberg TJ: **Ultralow-dissipation optomechanical resonators on a chip.**
*Nature Photonics* 2008, **2:**627–633.

Article
Google Scholar

Khine L, Palaniapan M: **High-Q bulk-mode SOI square resonators with straight-beam anchors.**
*J Micromech Microeng* 2009, **19:**015017.

Article
Google Scholar

Lee JEY, Yan J, Seshia AA: **Study of lateral mode SOI-MEMS resonators for reduced anchor loss.**
*J Micromech Microeng* 2011, **21:**045010.

Article
Google Scholar

Cole GD, Wilson-Rae I, Werbach K, Vanner MR, Aspelmeyer M: **Phonon-tunnelling dissipation in mechanical resonators.**
*Nature Commun* 2011, **2:**231.

Article
ADS
Google Scholar

Mohammadi S, Adibi A: **Waveguide-based phononic crystal micro/nanomechanical high-Q resonators.**
*J Microelectromech Syst* 2012, **21:**379–384.

Article
Google Scholar

Hsu FC, Hsu JC, Huang TC, Wang CH, Chang P: **Reducing support loss in micromechanical ring resonators using phononic band-gap structures.**
*J Phys D* 2011, **44:**375101.

Article
ADS
Google Scholar

Yu PL, Cicak K, Kampel NS, Tsaturyan Y, Purdy TP, Simmonds RW, Regal CA: **A phononic bandgap shield for high-Q membrane microresonators.**
*Appl Phys Lett* 2014, **104:**023510.

Article
ADS
Google Scholar

Tsaturyan Y, Barg A, Simonsen A, Villanueva LG, Schmid S, Schliesser A, Polzik ES: **Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded resonators for high-Q optomechanics.**
*Optics Express* 2014, **22:**6810–6821.

Article
ADS
Google Scholar

Pandey M, Reichenbach RB, Zehnder AT, Lal A, Craighead HG: **Reducing anchor loss in MEMS resonators using mesa isolation.**
*J Microelectromech Syst* 2009, **18:**836–844.

Article
Google Scholar

Harrington BP, Abdolvand R: **In-plane acoustic reflectors for reducing effective anchor loss in lateral–extensional MEMS resonators.**
*J Micromech Microeng* 2011, **21:**085021.

Article
Google Scholar

Yoon SW, Lee S, Perkins NC, Najafi K: **Analysis and wafer-level design of a high-order silicon vibration isolator for resonating MEMS devices.**
*J Micromech Microeng* 2011, **21:**015017.

Article
Google Scholar

Le Foulgoc B, Bourouina T, Le Traon O, Bosseboeuf A, Marty F, Breluzeau C, Grandchamp JP, Masson S: **Highly decoupled single-crystal silicon resonators: An approach for the intrinsic quality factor.**
*J Micromech Microeng* 2006, **16:**S45-S53.

Article
Google Scholar

Blom FR, Bouwstra S, Elwenspoek M, Fluitman JHJ: **Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry.**
*J Vac Sci Technol B* 1992, **10:**19–26.

Article
Google Scholar

Pandey AK, Pratap R, Chau FS: **Effect of pressure on fluid damping in MEMS torsional resonators with flow ranging from continuum to molecular regime.**
*Exp Mech* 2008, **48:**91–106.

Article
Google Scholar

Svitelskiy O, Sauer V, Liu N, Cheng KM, Finley E, Freeman MR, Hiebert WK: **Pressurized fluid damping of nanoelectromechanical systems.**
*Phys Rev Lett* 2009, **103:**244501.

Article
ADS
Google Scholar

Zener C: **Internal friction in solids I: Theory of internal friction in reeds.**
*Phys Rev* 1937, **52:**230–235.

Article
ADS
MATH
Google Scholar

Zener C: **Internal friction in solids II: General theory of thermoelastic internal friction.**
*Phys Rev* 1938, **53:**90–99.

Article
ADS
MATH
Google Scholar

Kinra VK, Milligan KB: **A second-law analysis of thermoelastic damping.**
*J Appl Mech* 1994, **61:**71–76.

Article
Google Scholar

Lifshitz R, Roukes ML: **Thermoelastic damping in micro- and nanomechanical systems.**
*Phys Rev B* 2000, **61:**5600–5609.

Article
ADS
Google Scholar

Prabhakar S, Vengallatore S: **Theory for thermoelastic damping in micromechanical resonators with two-dimensional heat conduction.**
*J Microelectromech Syst* 2008, **17:**494–502.

Article
Google Scholar

Prabhakar S, Païdoussis MP, Vengallatore S: **Analysis of frequency shifts due to thermoelastic coupling in flexural-mode micromechanical and nanomechanical resonators.**
*J Sound Vib* 2009, **323:**385–396.

Article
ADS
Google Scholar

Randall RH, Rose FC, Zener C: **Intercrystalline thermal currents as a source of internal friction.**
*Phys Rev* 1939, **56:**343–348.

Article
ADS
Google Scholar

Srikar VT, Senturia SD: **Thermoelastic damping in fine-grained polysilicon flexural beam resonators.**
*J Microelectromech Syst* 2002, **11:**499–504.

Article
Google Scholar

Bishop JE, Kinra VK: **Elastothermodynamic damping in laminated composites.**
*Int J Solids Struct* 1997, **34:**1075–1092.

Article
MATH
Google Scholar

Vengallatore S: **Analysis of thermoelastic damping in laminated composite micromechanical beam resonators.**
*J Micromech Microeng* 2005, **15:**2398–2404.

Article
Google Scholar

Nourmohammadi Z, Prabhakar S, Vengallatore S: **Thermoelastic damping in layered microresonators: critical frequencies, peak values, and rule of mixture.**
*J Microelectromech Syst* 2013, **22:**747–754.

Article
Google Scholar

Nayfeh AH, Younis MI: **Modeling and simulations of thermoelastic damping in microplates.**
*J Micromech Microeng* 2004, **14:**1711–1717.

Article
Google Scholar

Norris AN: **Dynamics of thermoelastic thin plates: a comparison of four theories.**
*J Thermal Stresses* 2006, **29:**169–195.

Article
Google Scholar

Duwel A, Candler RN, Kenny TW, Varghese M: **Engineering MEMS resonators with low thermoelastic damping.**
*J Microelectromech Syst* 2006, **15:**1437–1445.

Article
Google Scholar

Prabhakar S, Vengallatore S: **Thermoelastic damping in slotted and hollow microresonators.**
*J Microelectromech Syst* 2009, **18:**725–735.

Article
Google Scholar

Abdolvand R, Johari H, Ho GK, Erbil A, Ayazi F: **Quality factor in trench-refilled polysilicon beam resonators.**
*J Microelectromech Syst* 2006, **15:**471–478.

Article
Google Scholar

Chandorkar SA, Candler RN, Duwel A, Melamud R, Agarwal M, Goodson KE, Kenny TW: **Multimode thermoelastic dissipation.**
*J Appl Phys* 2009, **105:**043505.

Article
ADS
Google Scholar

Baur J, Kulik A: **Optimal sample shape for internal friction measurements using a dual cantilevered beam.**
*J Appl Phys* 1985, **58:**1489–1492.

Article
ADS
Google Scholar

Nouira H, Foltête E, Ait Brik B, Hirsinger L, Ballandras S: **Experimental characterization and modeling of microsliding on a small cantilever quartz beam.**
*J Sound Vib* 2008, **317:**30–49.

Article
ADS
Google Scholar

Kleiman RN, Kaminsky GK, Reppy JD, Pindak R, Bishop DJ: **Single crystal silicon high-Q torsional oscillators.**
*Rev Sci Instrum* 1985, **56:**2088–2091.

Article
ADS
Google Scholar

Borrielli A, Bonaldi M, Serra E, Bagolini A, Conti L: **Wideband mechanical response of a high-Q silicon double-paddle oscillator.**
*J Micromech Microeng* 2011, **21:**065019.

Article
Google Scholar

Bao M, Yang H: **Squeeze film air damping in MEMS.**
*Sens Act A* 2007, **136:**3–27.

Article
Google Scholar

Cleland AN: *Foundations of Nanomechanics*. Berlin: Springer; 2003.

Book
Google Scholar

Kiselev AA, Iafrate GJ: **Phonon dynamics and phonon assisted losses in Euler-Bernoulli nanobeams.**
*Phys Rev B* 2008, **77:**205436.

Article
ADS
Google Scholar

Kunal K, Aluru NR: **Akhiezer damping in nanostructures.**
*Phys Rev B* 2011, **84:**245450.

Article
ADS
Google Scholar

Vishwakarma SD, Pandey AK, Parpia JM, Southworth DR, Craighead HG, Pratap R: **Evaluation of mode dependent fluid damping in a high frequency drumhead microresonator.**
*J Microelectromech Syst* 2014, **23:**334–346.

Article
Google Scholar

Rinaldi S, Prabhakar S, Vengallatore S, Païdoussis MP: **Dynamics of microscale pipes containing internal fluid flow: damping, frequency shift and stability.**
*J Sound Vib* 2010, **329:**1081–1088.

Article
ADS
Google Scholar

Sader JE, Burg TP, Manalis SR: **Energy dissipation in microfluidic beam resonators.**
*J Fluid Mech* 2010, **650:**215–250.

Article
ADS
MATH
MathSciNet
Google Scholar

Blanter MS, Golovin IS, Neuhauser H, Sinning HR: *Internal Friction in Metallic Materials*. Berlin: Springer; 2007.

Google Scholar

Berry BS, Pritchet WC: **Extended capabilities of a vibrating-reed internal friction apparatus.**
*Rev Sci Instrum* 1983, **54:**254–256.

Article
ADS
Google Scholar

Prieler M, Bohn HG, Schilling W, Trinkaus H: **Grain boundary sliding in thin substrate-bonded Al films.**
*J Alloys Compd* 1994, **211–212:**424–427.

Article
Google Scholar

Liu X, Thompson E, White BE, Pohl RO: **Low-temperature internal friction in metal films and in plastically deformed bulk aluminum.**
*Phys Rev B* 1999, **59:**11767–11776.

Article
ADS
Google Scholar

Uozumi K, Honda H, Kinbara A: **Internal friction of vacuum-deposited silver films.**
*J Appl Phys* 1978, **49:**249–252.

Article
ADS
Google Scholar

Zhu AW, Bohn HG, Schilling W: **Internal friction associated with grain boundary diffusion in thin gold films.**
*Phil Mag A* 1995, **72:**805–812.

Article
ADS
Google Scholar

Choi DH, Kim H, Nix WD: **Anelasticity and damping of thin aluminum films on silicon substrates.**
*J Microelectromech Syst* 2004, **13:**230–237.

Article
Google Scholar

Vengallatore S: **Gorsky damping in nanomechanical structures.**
*Scripta Mater* 2005, **52:**1265–1268.

Article
Google Scholar

Ono T, Esashi M: **Effect of ion attachment on mechanical dissipation of a resonator.**
*Appl Phys Lett* 2005, **87:**044105.

Article
ADS
Google Scholar

Sosale G, Prabhakar S, Frechette L, Vengallatore S: **A microcantilever platform for measuring internal friction in thin films using thermoelastic damping for calibration.**
*J Microelectromech Syst* 2011, **20:**764–773.

Article
Google Scholar

Paolino P, Bellon L: **Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement.**
*Nanotechnology* 2009, **20:**405705.

Article
Google Scholar

Sosale G, Almecija D, Das K, Vengallatore S: **Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.**
*Nanotechnology* 2012, **23:**155701.

Article
ADS
Google Scholar

Yu PL, Purdy TP, Regal CA: **Control of material damping in high-Q membrane microresonators.**
*Phys Rev Lett* 2012, **108:**083603.

Article
ADS
Google Scholar

Palmer RG, Stein DL, Abrahams E, Anderson PW: **Models of hierarchically constrained dynamics for glassy relaxation.**
*Phys Rev Lett* 1984, **53:**958–961.

Article
ADS
Google Scholar

Yasumura KY, Stowe TD, Chow EM, Pfafman T, Kenny TW, Stipe BC, Rugar D: **Quality factors in micron- and submicron-thick cantilevers.**
*J Microelectromech Syst* 2000, **9:**117–125.

Article
Google Scholar

Zwickl BM, Shanks WE, Jayich AM, Yang C, Jayich ACB, Thompson JD, Harris JGE: **High quality mechanical and optical properties of commercial silicon nitride membranes.**
*Appl Phys Lett* 2008, **92:**103125.

Article
ADS
Google Scholar

Stoffels S, Autizi E, van Hoof R, Severi S, Puers R, Witvrouw A, Tilmans HAC: **Physical loss mechanisms for resonant acoustical waves in boron doped poly-SiGe deposited with hydrogen dilution.**
*J Appl Phys* 2010, **108:**084517.

Article
ADS
Google Scholar

Ohring M: *Materials Science of Thin Films*. San Diego: Academic Press; 2002.

Google Scholar

Lee Z, Ophus C, Fischer LM, Nelson-Fitzpatrick N, Westra KL, Evoy S, Radmilovic V, Dahmen U, Mitlin D: **Metallic NEMS components fabricated from nanocomposite Al-Mo films.**
*Nanotechnology* 2006, **17:**3063–3070.

Article
Google Scholar

Brown AM, Ashby MF: **Correlations for diffusion constants.**
*Acta Metall* 1980, **28:**1085–1101.

Article
Google Scholar

Smagin AG: **A quartz resonator for a frequency of 1 MHz with a Q-value of 4.2 x 10**
^{9}
**at a temperature of 2 K.**
*Cryogenics* 1975, **15:**483–485.

Article
ADS
Google Scholar

Spaepen F: **Interfaces and stresses in thin films.**
*Acta Mater* 2000, **48:**31–42.

Article
Google Scholar

Lee HJ, Cornella G, Bravman JC: **Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications.**
*Appl Phys Lett* 2000, **76:**3415–3417.

Article
ADS
Google Scholar

Chakram S, Patil YS, Chang L, Vengalattore M: **Dissipation in ultrahigh quality factor SiN membrane resonators.**
*Phys Rev Lett* 2014, **112:**127201.

Article
ADS
Google Scholar

Unterreithmeier QP, Faust T, Kotthaus JP: **Damping of nanomechanical resonators.**
*Phys Rev Lett* 2010, **105:**027205.

Article
ADS
Google Scholar

Schmid S, Jensen KD, Nielsen KH, Boisen A: **Damping mechanisms in high-Q micro and nanomechanical string resonators.**
*Phys Rev B* 2011, **84:**165307.

Article
ADS
Google Scholar

Berry BS: **Damping mechanisms in thin-layer materials.** In *M3D: Mechanics and Mechanisms of Material Damping*. Edited by: Kinra VK, Wolfenden A. Philadelphia: American Society for Testing and Materials; 1992:28–44.

Google Scholar

Ashby MF: *Materials Selection in Mechanical Design*. Oxford: Butterworth-Heinemann; 2011.

Google Scholar

Sosale G, Das K, Frechette L, Vengallatore S: **Controlling damping and quality factors of silicon microcantilevers by selective metallization.**
*J Micromech Microeng* 2011, **21:**105010.

Article
Google Scholar

Serra E, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Bonaldi M: **Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating.**
*J Appl Phys* 2012, **111:**113109.

Article
ADS
Google Scholar