 Research article
 Open Access
 Published:
Influence of squeezefilm damping on highermode microcantilever vibrations in liquid
EPJ Techniques and Instrumentation volume 1, Article number: 10 (2014)
Abstract
Background
The functionality of atomic force microscopy (AFM) and nanomechanical sensing can be enhanced using highermode microcantilever vibrations. Both methods require a resonating microcantilever to be placed close to a surface, either a sample or the boundary of a microfluidic channel. Below a certain cantileversurface separation, the confined fluid induces squeezefilm damping. Since damping changes the dynamic properties of the cantilever and decreases its sensitivity, it should be considered and minimized. Although squeezefilm damping in gases is comprehensively described, little experimental data is available in liquids, especially for highermode vibrations.
Methods
We have measured the flexural highermode response of photothermally driven microcantilevers vibrating in water, close to a parallel surface with gaps ranging from ~200 μm to ~1 μm. A modified model based on harmonic oscillator theory was used to determine the modal eigenfrequencies and quality factors, which can be converted into comoving fluid mass and dissipation coefficients.
Results
The range of squeezefilm damping between the cantilever and surface decreased for eigenfrequencies (inertial forces) and increased for quality factors (dissipative forces) with higher mode number.
Conclusions
The results can be employed to improve the quantitative analysis of AFM measurements, design miniaturized sensor fluid cells, or benchmark theoretical models.
PACS: 07.10.Cm (Micromechanical devices and systems), 46.40.Ff (Resonance and damping of mechanical waves), 07.79.v (Scanning probe microscopes and components), 07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing).
Introduction
Damping is an important design criterion for micro and nanometer sized resonators, because surface forces dominate body forces at small dimensions [1]. Immersing a resonator, e.g., a microcantilever, in fluid drastically changes its dynamic properties. The eigenfrequencies and quality factors decrease due to hydrodynamic forces, which can be decomposed into an inertial (added mass) and dissipative (viscous damping) term [2]. Additionally, placing the resonator close to a solid surface leads to squeezefilm damping, where displacement of the fluid between the resonator and the surface during each vibration period introduces additional added mass and viscous damping [3]. The damping occurring by both mechanisms has direct impact on atomic force microscopy (AFM) and dynamically operated nanomechanical sensors. With progressing miniaturization, squeezefilm damping starts to dominate other dissipative effects and, thus, needs to be considered and characterized [4].
Furthermore, higher modes of vibration are increasingly used. In multifrequency AFM imaging, higher modes allow the material characteristics, e.g., mechanical, magnetic or electrical properties, of the substrate to be measured [5]. To reduce squeezefilm damping, AFM samples have been placed on pillars [6], or cantilever geometries have been optimized by focusedion beam milling [7]. In cantileverbased sensor applications, the use of higher vibrational modes provides increased mass sensitivity [8] and allows the elastic properties [9] and the position of adsorbates [10] to be disentangled. Squeezefilm damping needs to be considered below a certain critical dimension of the AFM cantilever tip or container in which the cantilever sensor is mounted.
To our knowledge, squeezefilm damping of micrometersized cantilevers vibrating in higher modes in liquid has not been measured to date. In contrast, it has been thoroughly investigated for resonators immersed in gases, because of its importance for microelectromechanical systems (MEMS), e.g., torsional mirrors [11] or cantilevers [12]. Even though, less attention has been paid to the problem in liquids, both analytical and numerical methods have been employed to model the behavior of cantilevers immersed in liquid and vibrating in close proximity to a surface. Analytical approaches [13] account for dissipative and inertial effects in the liquid, but due to the assumption of a twodimensional flow field higher modes of vibration were not considered. Numerical approaches can effectively describe different cantileversurface inclination angles, vibrational modes, and varying external driving forces [2],[4],[14]. However, semianalytical equations describing the hydrodynamic load acting on cantilevers under squeezefilm damping only consider the fundamental mode of vibration [13],[14]. Squeezefilm damping in liquid is governed by two dimensionless quantities, the Reynolds number, Re, and the normalized gap, H[13]:
where b is the width of the cantilever, ρ_{ f } the fluid density, η_{ f } the fluid viscosity, f_{ n } the cantilever eigenfrequency in liquid, and g the gap between the cantilever and the surface (see Figure 1). The cantilever width, b, is the dominant length scale of the flow [13]. If the vibration amplitudes are orders of magnitude smaller than b, i.e., KeuleganCarpenter numbers « 1 [15], the effect becomes independent of the amplitude [16]. Furthermore, the continuum hypothesis is valid because the meanfreepath of the molecules in liquid is very small compared to the dominant length b and the gap size g, i.e., Knudsen numbers « 1 [15].
Experimental investigations of cantilevers with dimensions ranging from centimeters to micrometers, immersed in water, buffer, organic solvents and oils are reported in the literature [3],[15][19]. However, all experimental studies on microcantilevers in liquid and close to a surface, were limited to the fundamental mode (n = 1) [17][19]. Here we present the full spectral response of microcantilevers vibrating in water at different distances from a polydimethylsiloxane (PDMS) surface. PDMS was selected because of its abundant use for the fabrication of microfluidic devices. Spuriousfree resonance spectra were obtained by driving the microcantilevers photothermally [20], and several higher flexural modes of vibration were characterized.
Results and discussion
To measure the effects of squeezefilm damping, a tipless microcantilever (250 μm × 35 μm × 2 μm) was placed close to a surface and the gap, g, was varied from ~200 μm to ~1 μm using a motorized stage (Figure 1). Experiments using longer cantilevers are reported in the Additional file 1. Photothermal excitation was employed to drive the microcantilever to resonance. Amplitude and phase spectra were acquired by sweeping an excitation frequency range from 0.5 kHz to 800 kHz and recording the corresponding cantilever response. As shown in Figure 2 for different cantileverPDMS surface gaps, the spectra span four flexural modes of vibration. The influence of the cantileversurface gap became substantial for H = g/b < 1, causing the resonance peaks to shift towards lower frequencies and broaden significantly (decreasing quality factors). A model, consisting of a sum of damped harmonic oscillators and terms considering the measurement setup (see Methods, Equation 4), described the experimental phase data with good accuracy (Figure 3). Applying this model to the data, allowed the eigenfrequency, f_{ n }, and quality factor, Q_{ n }, of each mode n, to be extracted at different cantileversurface gaps, g (Figure 4).
To compare cantilevers from different chips, f_{ n } and Q_{ n } were normalized to the values indicated by experimental data recorded far from the surface, where its presence had no influence (see Methods). As shown in Figure 5a, due to squeezefilm damping the eigenfrequencies of all modes decrease as the cantileversurface gaps become smaller. Further, even though some of the differences are slight, it is clear that highermode eigenfrequencies are less influenced by the proximity of the surface. In contrast, the highermode quality factors are affected when the cantileversurface gap is still comparatively large (Figure 5b) and the fundamental mode is influenced least. To quantitatively compare the effects, a characteristic cantileversurface gap g_{ n }* was defined for the fundamental mode as g_{ 1 }* = b/2 = 17.5 μm (H_{ 1 }* = 0.5). At g_{ 1 }* the frequencies (mean ± SD) of the fundamental vibration dropped to (93.4 ± 0.7)% and the quality factors to (77.8 ± 7.5)% of the initial value. Corresponding characteristic gaps (g_{ n }*), where the frequencies and quality factors dropped by the amounts measured for g_{ 1 }*, were then determined for the higher modes of vibration. As shown in Figure 6, the characteristic gap decreases for the eigenfrequencies and increases for the quality factors with increasing mode number. Similar behavior was observed for longer cantilevers (see Additional file 1), however, the effect seems to diminish with increasing cantilever length. To estimate the range of squeezefilm damping, i.e., the gap where the onset of the effect occurs, the characteristic gap was multiplied by a factor of two. Because of the definition, the range of squeezefilm damping for the fundamental mode is H = 1. The ranges for modes 2 to 4 (mean ± SD) were 0.93 ± 0.18, 0.84 ± 0.21, and 0.74 ± 0.21 for the eigenfrequencies and 1.22 ± 0.35, 1.55 ± 0.37, and 1.67 ± 0.20 for the quality factors. The largest critical gap for the frequencies, i.e., where the surface has no influence on the dynamics of the microcantilever, can be estimated from the fundamental mode, which is affected first. In contrast, the largest critical gap for the quality factors depends on the highest mode measured.
To obtain a more general description of the results, the added mass coefficient, a_{ m }, and the damping coefficient, c, were calculated for each mode. While the added mass coefficient a_{ m } quantifies the comoving fluid mass relative to the cantilever mass and is a measure of the inertial loading, the damping coefficient c equals the energy dissipation per unit length acting on the cantilever. The required vacuum frequencies were calculated using Equations 6 and 7 (see Methods) and the eigenfrequencies recorded in the unbounded fluid, i.e., far from the surface (Table 1). The observed vacuum frequency variations mainly originate from manufacturingrelated uncertainties in the dimensions of the microcantilevers. Subsequently, the added mass coefficients could be determined (see Methods, Equation 6). The values without the influence of squeezefilm damping (H » 1) are provided in Table 1. Note that some authors defined the added mass coefficient as the comoving mass relative to the fluid mass displaced by the static cantilever [3],[16]. For direct comparison with their values, a_{ m } has to be multiplied by ρ_{ c }/ρ_{ f } , i.e., ~2.3 in the present case. The damping coefficients c are the sum of structural, c_{ s }, and viscous, c_{ v }, damping. For microcantilevers immersed in liquid, structural damping is orders of magnitude smaller than viscous damping (c_{ s } « c_{ v }), and can thus be neglected [3]. The damping coefficients were calculated using the measured quality factors and eigenfrequencies (Equation 8, see Methods). Table 1 shows the damping coefficients without the influence of squeezefilm damping (H » 1). Even though highermodes dissipate less energy per oscillation cycle (higher quality factors), they have larger damping coefficients due to their higher eigenfrequencies (cycles/second). Figure 7 shows how the added mass and damping coefficients increase due to squeezefilm damping. The magnitude of the observed shift in added mass coefficients decreased with mode number, whereas the shift in damping coefficients increased.
Conclusions
We have measured the squeezefilm damping on higher flexural mode vibrations of microcantilevers placed in proximity to a parallel surface in liquid. Due to the strong damping only a direct excitation method, such as the employed photothermal excitation [20], obtains spuriousfree resonance spectra. A model consisting of a sum of harmonic oscillators was employed to extract the modal eigenfrequencies and quality factors from the phase spectra, and described the measured data well. Correct alignment of the data, i.e., calibration of the gap g, was crucial and limited the precision of the measurements. As predicted [13],[14], strong squeezefilm damping of the fundamental mode was observed for normalized gaps H < 1. With increasing mode number the range of squeezefilm damping decreased for the eigenfrequencies (inertial forces) and increased for the quality factors (dissipative forces). Furthermore, the effect seems to depend on the length of the cantilever that determines the spatial wavelength of each mode. These findings should be considered for the design of sensor containers and cantilever tip geometries, because the quality factor is directly related to the sensitivity of the sensor [5]. The observed behavior is likely due to the threedimensional nature of the flow field generated by higher modes, where gradients along the length of the cantilever must not be neglected [14]. For theoretical models, this entails the introduction of another parameter, besides the normalized gap H and the Reynolds number Re, related to the spatial wavelength of the cantilever, i.e., depending on the mode number as well as the cantilever length (similar to the normalized mode number in [21]). Finally, added mass and damping coefficients were calculated to support the comparability of the data. The shift in added mass decreased with mode number as predicted by numerical models [2]. The opposite was observed for the damping coefficients, which increased. More work is required to identify the underlying mechanisms governing squeezefilm damping acting on higher modes. Nevertheless, our data from microcantilevers with common dimensions, allows the magnitude of the squeezefilm damping effect to be assessed.
Methods
Experimental setup
Measurements were made as the upper surface of a small cavity containing water was moved closer to the immersed microcantilever. A diagram of the experimental setup is shown in Figure 8. Cantilever vibration was driven by photothermal excitation induced by an intensitymodulated laser beam (405 nm), and detected by monitoring the deflection of a second laser beam (780 nm) using the optical setup described previously [20],[22]. A mirror galvanometer (GSV011, Thorlabs) was added to the setup to automatically control the lowpass filtered position (f_{ LP } = 1 kHz) of the laser spot on the positionsensitive detector (PSD) used to monitor cantilever vibration (measurement bandwidth ~ 850 kHz). A Zurich Instruments HF2 lockin amplifier was employed to record cantilever resonance spectra by sweeping a given range of excitation frequencies and demodulating the corresponding phase and amplitude (lockin bandwidth = 4.38 Hz, filter order = 24 dB/octave, 1000 data points). The setup was controlled using LabVIEW (National Instruments) and measurements were automated using the openBEB macro language [23]. The automation involved acquisition of spectra, adjusting the cantileversurface gap, and adjusting the laser power and position of the laser spot on the positionsensitive detector using a proportionalintegralderivative (PID) controller. The whole setup was temperature controlled to 293 K within ± 0.2 K.
Tipless silicon microcantilevers (NSC12/tipless/noAl, MikroMasch) with nominal dimensions of 250 μm × 35 μm × 2 μm and calculated spring constants of 0.76 N/m were employed. The data reported in the Additional file 1 was obtained using longer microcantilevers (300 μm × 35 μm × 2 μm and 350 μm × 35 μm × 2 μm) following the same protocol. A comparison of the different cantilevers is provided in the Additional file 1: Table S1. To improve reflectivity and avoid unspecific adsorption, 20 nm gold was coated at the bottom side of the cantilevers and they were passivated with short polyethylene glycol chains, as described previously [22].
The cavity containing the water was formed using PDMS (SYLGARD 184, Dow Corning) and a glass microscope slide (AA00000112E, MenzelGläser), exploiting surface tension forces (see Figure 8). The base was fabricated by reversibly bonding a 150 μmthick PDMS sheet with a 10 mm wide circular hole at its center to the glass slide. The 300 μmthick cantilever chip was attached to the glass slide at the center of the hole using UV curable glue (FUVE61, Newport). The thickness of the chip was sufficient (H = 8.6) to exclude any influence of the glass surface on cantilever dynamics. Furthermore, as the thickness of the PDMS sheet (150 μm) was less than the thickness of the chip, access from above was retained. A flat upper cavity surface was fabricated by pouring degassed PDMS onto a silicon wafer to a thickness of about 5 mm and baking for 4 hours at 60°C. The PDMS was subsequently removed from the wafer and cut to give a circular disk with a diameter of 15 mm. The diameter exceeded all dimensions of the microcantilevers by at least an order of magnitude to avoid edge effects. The rougher surface of the disc was fixed to a kinematic mirror mount (KM05/M, Thorlabs), which was in turn mounted on an encoded piezo motor linear stage (CONEXAGLS2527P, Newport) with a nominal precision of 0.2 μm. The cavity allowed the cantilever to be immersed in ~200 μL of water.
The flat upper PDMS surface was manually aligned parallel to the cantilever. To do this, a piece of silicon wafer was attached to the surface by adhesion forces to render it reflective. The readout laser was then focused on the silicon surface and detected by the PSD otherwise used to measure the cantilever deflection. The residual angular misalignment was estimated to be less than 1 mrad (0.06°). The same procedure was repeated after rotating the PSD by 90° to align the angle perpendicular to the longitudinal axis of the cantilever.
To determine the coarse contact point, the surface was approached to the cantilever until a large deviation in the deflection signal was observed. Next, the surface was withdrawn to a distance where it had no influence on the cantilever vibration (g ≈ 200 μm, H ≈ 6). To adjust the gap, the motorized linear stage was operated in a closedloop configuration. After recording a spectrum the position was stored and the surface was moved closer to the cantilever. The step size was reduced as the gap decreased, to account for the nonlinearity of squeezefilm damping. Next, for a more precise gap determination, the model of Tung et al.[14] was fitted to the frequency data of the fundamental mode (see Figure 4a) with parameters f_{ 1,vac } and a gap offset:
The offset was then subtracted from the zposition of the measurement to align the data. We emphasize that the definition of H by Tung et al.[14] differs by a factor of two from Equation (1).
Data analysis
All data analysis was performed using custom scripts in IGOR Pro (Wavemetrics, see Additional file 1). Both amplitude and phase spectra contain the eigenfrequencies and quality factors of the vibrational modes. However, at small cantileversurface gaps the resonance peaks in the amplitude spectrum become indistinguishable due to the strong peak broadening, i.e., low quality factors (see Figure 2). Furthermore, large differences in peak amplitude among higher modes of vibration complicate fitting and introduce dependencies on the initial parameters. In contrast, the phase shifts of each mode remain well resolved even at low quality factors. Thus, phase spectra were used to extract the modal eigenfrequencies and quality factors (see Figure 3). To weight each mode by the same amount on least squares fitting, the frequency spacing was transformed from linear (p = 1), i.e., equally spaced, to a power law according to
where m is a data point in the spectrum ranging from 0 to M1, M the total number of points, f_{ m=0 } the lowest and f_{ m=M } the highest frequency in the measured data and p the power of the transformation required for each mode of vibration to be assigned an equal number of data points. The value of p was estimated to be 0.514 from the calculated widths of the resonance peaks of all employed cantilevers in an unbounded fluid [21]. The phase values corresponding to the transformed frequencies f* were linearly interpolated from the measured data.
The following expression was used to extract the modal eigenfrequencies, f_{ n }, and quality factors, Q_{ n }, from the phase spectrum using a LevenbergMarquardt algorithm (see Figure 3):
where the cantilever response ϕ_{ c } is the sum of damped harmonic oscillators with f_{ n } and Q_{ n } over all recorded modes N, ϕ_{ th } is the linear thermal lag due to photothermal excitation with time constant τ_{ th }[24] and ϕ_{ el } (center frequency f_{ el } and offset c_{ off }) is an empirical firstorder filter that considers the phase responses of the measurement electronics. The filter center frequency f_{ el } and the time constant τ_{ th } were determined on the first spectrum recorded far from the surface (H » 1) and then held constant.
The linearized equation of motion for a cantilever of length L, width b, thickness h and mass density ρ_{ c } is [16]:
where Z(x,t) is the zdirection flexural displacement at position x along the cantilever beam at time point t, E and I = bh^{3}/12 the Young’s modulus and area moment of inertia of the cantilever, μ_{ c } = ρ_{ c }bh the mass per unit length of the cantilever, a_{ m } the added mass coefficient quantifying the comoving fluid mass relative to the cantilever mass, c the sum of structural and viscous damping per unit length, F_{ drive } an external driving force per unit length. The parameters used for the following calculations are provided in Table 2. The added mass coefficients a_{ m } were calculated from the measured eigenfrequencies f_{ n }[2]:
The vacuum frequencies f_{ n },_{ vac } for each mode n were determined far from the surface (H » 1), where the added mass coefficient can be calculated for higher modes, with normalized mode number κ, according to the theory by Van Eysden and Sader [21]:
The damping coefficients per unit length were calculated as [7],[16]
Additional file
Abbreviations
 AFM:

Atomic force microscopy
 PDMS:

Polydimethylsiloxane
 PID:

Proportionalintegralderivative (controller)
 PSD:

Positionsensitive detector
 SD:

Standard deviation
References
 1.
Joshi S, Hung S, Vengallatore S: Design strategies for controlling damping in micromechanical and nanomechanical resonators. EPJ Tech Instrum 2014, 1: 5. 10.1140/epjti5
 2.
Basak S, Raman A, Garimella SV: Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J Appl Phys 2006, 99: 114906. 10.1063/1.2202232
 3.
Harrison C, Tavernier E, Vancauwenberghe O, Donzier E, Hsu K, Goodwin ARH, Marty F, Mercier B: On the response of a resonating plate in a liquid near a solid wall. Sens Actuators A Phys 2007, 134: 414–426. 10.1016/j.sna.2006.06.023
 4.
Decuzzi P, Granaldi A, Pascazio G: Dynamic response of microcantileverbased sensors in a fluidic chamber. J Appl Phys 2007, 101: 024303. 10.1063/1.2426966
 5.
Garcia R, Herruzo ET: The emergence of multifrequency force microscopy. Nat Nanotechnol 2012, 7: 217–226. 10.1038/nnano.2012.38
 6.
Kawakami M, Taniguchi Y, Hiratsuka Y, Shimoike M, Smith DA: Reduction of the damping on an AFM cantilever in fluid by the use of micropillars. Langmuir 2010, 26: 1002–1007. 10.1021/la902472h
 7.
Maali A, CohenBouhacina T, Jai C, Hurth C, Boisgard R, Aimé JP, Mariolle D, Bertin F: Reduction of the cantilever hydrodynamic damping near a surface by ionbeam milling. J Appl Phys 2006, 99: 024908. 10.1063/1.2163996
 8.
Ghatkesar MK, Barwich V, Braun T, Ramseyer JP, Gerber C, Hegner M, Lang HP, Drechsler U, Despont M: Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology 2007, 18: 445502. 10.1088/09574484/18/44/445502
 9.
Spletzer M, Raman A, Reifenberger R: Elastometric sensing using higher flexural eigenmodes of microcantilevers. Appl Phys Lett 2007, 91: 184103. 10.1063/1.2803215
 10.
Dohn S, Sandberg R, Svendsen W, Boisen A: Enhanced functionality of cantilever based mass sensors using higher modes. Appl Phys Lett 2005, 86: 233501. 10.1063/1.1948521
 11.
Bao M, Yang H: Squeeze film air damping in MEMS. Sens Actuators A Phys 2007, 136: 3–27. 10.1016/j.sna.2007.01.008
 12.
Dareing DW, Yi D, Thundat T: Vibration response of microcantilevers bounded by a confined fluid. Ultramicroscopy 2007, 107: 1105–1110. 10.1016/j.ultramic.2007.02.048
 13.
Green CP, Sader JE: Frequency response of cantilever beams immersed in viscous fluids near a solid surface with applications to the atomic force microscope. J Appl Phys 2005, 98: 114913. 10.1063/1.2136418
 14.
Tung RC, Jana A, Raman A: Hydrodynamic loading of microcantilevers oscillating near rigid walls. J Appl Phys 2008, 104: 114905. 10.1063/1.3033499
 15.
Grimaldi E, Porfiri M, Soria L: Finite amplitude vibrations of a sharpedged beam immersed in a viscous fluid near a solid surface. J Appl Phys 2012, 112: 104907. 10.1063/1.4765029
 16.
Naik T, Longmire EK, Mantell SC: Dynamic response of a cantilever in liquid near a solid wall. Sens Actuators A Phys 2003, 102: 240–254. 10.1016/S09244247(02)003989
 17.
Rankl C, Pastushenko V, Kienberger F, Stroh CM, Hinterdorfer P: Hydrodynamic damping of a magnetically oscillated cantilever close to a surface. Ultramicroscopy 2004, 100: 301–308. 10.1016/j.ultramic.2003.12.014
 18.
Kim S, Kihm KD: Temperature dependence of the nearwall oscillation of microcantilevers submerged in liquid environment. Appl Phys Lett 2007, 90: 081908. 10.1063/1.2680052
 19.
Fornari A, Sullivan M, Chen H, Harrison C, Hsu K, Marty F, Mercier B: Experimental observation of inertiadominated squeeze film damping in liquid. J Fluids Eng 2010, 132: 121201. 10.1115/1.4003150
 20.
Bircher BA, Duempelmann L, Lang HP, Gerber C, Braun T: Photothermal excitation of microcantilevers in liquid: effect of the excitation laser position on temperature and vibrational amplitude. Micro Nano Lett 2013, 8: 770–774. 10.1049/mnl.2013.0352
 21.
Van Eysden CA, Sader JE: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: arbitrary mode order. J Appl Phys 2007, 101: 044908. 10.1063/1.2654274
 22.
Bircher BA, Duempelmann L, Renggli K, Lang HP, Gerber C, Bruns N, Braun T: Realtime viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators. Anal Chem 2013, 85: 8676–8683. 10.1021/ac4014918
 23.
Ramakrishnan C, Bieri A, Sauter N, Roizard S, Ringler P, Müller SA, Goldie KN, Enimanev K, Stahlberg H, Rinn B, Braun T: openBEB: open biological experiment browser for correlative measurements. BMC Bioinformatics 2014, 15: 84. 10.1186/147121051584
 24.
Pini V, Tiribilli B, Gambi CMC, Vassalli M: Dynamical characterization of vibrating AFM cantilevers forced by photothermal excitation. Phys Rev B 2010, 81: 054302. 10.1103/PhysRevB.81.054302
Acknowledgements
The authors gratefully acknowledge Henning Stahlberg (CCINA, Biozentrum, University of Basel) for financial support and providing facilities, Shirley Müller (CCINA, Biozentrum, University of Basel) for critically reading and discussing the manuscript, Francois Huber and Hans Peter Lang (SNI, Institute of Physics, University of Basel) for their support on cantilever preparation, Stefan Arnold and Andrej Bieri (CCINA, Biozentrum, University of Basel) for fruitful discussions.
This work was supported by ARGOVIA grant NoViDeMo and Swiss National Science Foundation grant SNF 200020_146619.
Author information
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
BAB and TB conceived and designed the study. RK and BAB carried out the experiments. RK, TB and BAB programmed the control software. BAB analyzed the data and drafted the manuscript. All authors revised the manuscript and approved the final version.
Electronic supplementary material
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bircher, B.A., Krenger, R. & Braun, T. Influence of squeezefilm damping on highermode microcantilever vibrations in liquid. EPJ Techn Instrum 1, 10 (2014). https://doi.org/10.1140/epjti/s4048501400106
Received:
Accepted:
Published:
Keywords
 Microcantilever
 Dissipation
 Squeezefilm damping
 Higher eigenmode
 Photothermal excitation
 Eigenfrequency
 Quality factor
 Fluid–structure interaction